

9th International Conference on Precision Agriculture Denver, CO - July 21-23

Dr. Luís Ignácio Prochnow IPNI Brazil Program Director

ION EXCHANGE RESIN FOR ACESSING THE BIOAVAILABILITY OF PLANT NUTRIENTS IN AGRICULTURAL SOIL SYSTEMS

A GOOD PROGRAM UNDER <u>PRECISION</u> <u>AGRICULTURE NUTRIENT MANAGEMENT</u> SHOULD INITIALLY, AND ABOVE ALL, HAVE AN <u>EFFICIENT METHOD</u> TO PROPERLY EVALUATE THE <u>BIOAVAILABILITY OF PLANT NUTRIENTS</u>

Spatial distribution of pH CaCl₂ 0.01 mol L⁻¹ (A). P (B). base saturation (C). and soil management recomendation (D) in farms São José da Barra. São João de Cima e Volta Grande (<u>Sparovek & Cooper, 2003</u>)

EXERCISE 1

The determination of P in a soil sample, using methodology "A", revealed an amount of 4 mg dm⁻³ (<u>very low</u>). The fertilizer recomendation to soybean in this case would be <u>100 kg Ha⁻¹ of</u> P_2O_5 . An experiment under this field site showed that the soybean crop did <u>not respond</u> <u>to P</u> (3.5 t Ha⁻¹). Make comments regarding the <u>effectiveness</u> of methodology "A".

SEVERAL METHODS TO EVALUATE SOIL NUTRIENT BIOAVAILABILITY

ADVANTAGES OF SOIL CHEMICAL ANALYSIS

Rate of P₂O₅ application considering regular farmer practice versus when utilizing soil chemical analysis.

Area	Soil P ⁽¹⁾	Rate of 1	P ₂ O ₅ balance	
		Applied by farmer Required ⁽²⁾		
	mg dm ⁻³	kg h		
Α	3	60 90		- 30
В	12	60	60	0
С	28	60	30	+ 30

⁽¹⁾ Soil P (mg dm⁻³): 0 - 6 = very low, 7 - 15 = low, 16 - 40 = medium, 41 - 80 = high, > 80 = very high.

⁽²⁾ According to maize calibration and response curve studies by the resin method to evaluate the bioavailable pool of P in the soil.

PROPERLY ADJUSTED TO LOCAL CONDITIONS

✓ <u>CALIBRATION</u> (NUMBERS VERSUS PLANT

REQUIREMENTS)

✓ <u>RESPONSE CURVES</u> (WHAT TO ADD?)

CORRELATION STUDIES

CALIBRATION STUDIES

CALIBRATION STUDIES

RESPONSE CURVE STUDIES

RECOMENDATION CHART

Adubação mineral de plantio: Aplicar de acordo com a análise de solo e a produtividade esperada, conforme a seguinte tabela:

	Nitro- gênio	P resina, mg/dm ³				K ⁺ trocável, mmol _c /dm ³				
YIELD		0-6	7-15	16-40	>40	0-0,7	0,8-1,5	1,6-3,0	>3,0	
t/ha	N, kg/ha		P ₂ O ₅	5, kg/ha —		5	— K ₂ O, k	g/ha (²)-		
2-4	10	60	40	30	20	50	40	30	0	
4-6	20	80	60	40	30	50	50	40	20	
6-8	30	90	70	50	30	50	50	50	30	
8-10	30	(¹)	90	60	40	50	50	50	40	
10-12	30	(¹)	100	70	50	50	50	50	50	

(¹) É improvável a obtenção de alta produtividade de milho em solos com teores muito baixos de P, independentemente da dose de adubo empregada. (²) Para evitar excesso de sais, no sulco de plantio, a adubação potássica para doses maiores que 50 kg/ha de K₂O está parcelada, prevendo-se a aplicação em cobertura.

Maize – Raij et al, 1996

PROCEDURE HAS TO BE SPECIFIC FOR

✓ METHODOLOGY
 ✓ AREA/REGION AND SOILS CONSIDERED
 ✓ CULTIVATION SYSTEM
 ✓ SOIL DEPTH SAMPLING

IMPORTANT ISSUES

✓ PROPER SOIL SAMPLING

✓ USE OF RELIABLE LAB

Correct result = 10 Precise: 9, 10, 8, 9 Accurate: around 10 Precise but inaccurate: 22, 23, 21 Accurate (AV), not precise: 7, 13, 6, 14

- ✓ PRECISION AND ACCURACY
- ✓ CAREFULL INTERPRETATION
- ✓ CAREFULL RECOMMENDATION
 ✓ CAREFULL APPLICATION

THE ION EXCHANGE RESIN METHOD

✓ H-C ARTIFICIAL PHYSICAL PRODUCT ✓ HIGH EXCHANGE CAPACITY ✓ <u>BIO-CHEMICAL-PHYSICAL</u> METHOD ✓ RESIN WITH CEC OR AEC ✓ MIXTURE OF TWO (EX.: P, CA, MG AND K)

SOIL P REACTIONS

SOIL SAMPLE AND RESIN

16 H SHAKING

SEPARATION

1 H SHAKING

P QUANTIFICATION

SOIL CHEMICAL ANALYSIS RESULT

Resultado de análise química de terra de rotina												
Amostra	pН	M.O.	Р	K	Ca	Mg	Al	H+Al	S	SB	CTC	V%
		g dm ⁻³	mg dm ⁻³					mmol _c dm	-3			
A(0-20)	5,4	20	7	1,0	36	14	0	25	2	51	76,0	67
A (20-40)	4,4	14	4	0,7	23	6	12	42	3	29,7	71,7	41
B (0-20)	5,3	28	42	4,4	48	16	0	35	12	68,4	103,4	66

ADVANTAGES IER

EFFECTIVENESS OF P SOIL EXTRACTORS (70 SCIENFIC PAPERS)

METHOD	COEFICIENTT OF DETERMINATION (%)							
METHOD	ACID	NOT SPECIFIED						
Resin	84	83	69					
Olsen	47	52	58					
Mehlich 1	56	39	41					
Bray 1	53	25	48					

Source: Adapted from SILVA e RAIJ (1999).

EFFECTIVENESS OF THE PRE TREATMENT OF THE RESIN

2011	COTTON (Kg ha ⁻¹)		RESIN-HCI		RESIN	-NaCl	RESIN-NaHCO ₃		
SOIL	NO P	WITH P	рН (mg dm ⁻³)	Р	pH (mg dm ⁻³)	Р	pH (mg dm ⁻³)	Р	
1	3.678	3.673	3.37	3	5.58	5	6.78	36	
2	2.058	2.244	3.34	2	5.29	1	6.79	12	

Source: RAIJ et al. (1986).

EFFECTIVENESS OF DIFFERENT P METHODOLIGIES

Evaluation of P bioavailability	TSP Before Seeding (STANDARD)		Fertilizers Applied 75 Prior to Seeding								
			TSP		Low Rea	ctive PR	Calcined AI-P				
	Valor	Index	Value	Index	Value	Index	Value	Index			
P uptake by soybean (mg_pot ⁻¹)	4.26	100	2.25	53	1.13	27	1.72	40			
P resin (mg dm ⁻³)	12.7	100	7.9	62	1.70	11	4.9	39			
P Bray 1 (mg dm ⁻³)	37.9	100	39.6	104	7.90	21	39.4	104			
P Mehlich 1 (mg dm ⁻³)	27.9	100	24.6	88	42.8	153	15.0	54			

EFFECT OF SOIL PH IN THE AMOUNT OF P IN PLANT LEAF AND SOIL P BY DIFFERENT METHODOLOGIES

	рН	Leaf P	Soil P (mg dm ⁻³)					
Crop and Location	CaCl ₂	(g Kg⁻¹)	Mehlich 1	Bray 1	Olsen	Resina		
	3.8 d *	2.44 b	17 a	20 a	41 a	33 b		
Deere	4.2 c	3.21 a	18 a	21 a	33 b	36 ab		
Beans Parigüora Acu	4.7 b	3.25 a	18 a	20 a	26 c	38 ab		
Paliquela-Açu	5.1 a	3.26 a	19 a	18 a	19 d	43 a		
	5.2 a	3.25 a	20 a	19 a	21 d	43 a		
0 1	4.3 c	2.79 с	12 b	24 a	17 a	22 b		
	4.6 c	3.27 b	12 b	22 a	17 a	26 ab		
Suntiower	5.3 b	3.81 a	16 a	25 a	16 a	33 ab		
WOCOCA	5.5 ab	3.87 a	15 a	20 a	12 a	35 a		
	5.7 a	3.80 a	16 a	20 a	12 a	37 a		
	4.3 a	1.85 c	6 a	15 a	10 a	13 c		
Covhoon	4.8 d	2.06 bc	7 a	16 a	11 a	16 c		
Mococa	5.5 c	2.44 ab	5 a	13 a	7 a	17 bc		
WOCOCa	6.1 b	2.26 a	7 a	17 a	8 a	22 ab		
	6.4 a	2.55 a	7 a	15 a	8 a	27 a		
	4.5 d	2.35 b	9 a	20 a	18 a	16 c		
Soybean	4.9 c	2.69 ab	8 a	22 a	15 ab	19 bc		
Ribeirão Preto	6.1 b	2.88 a	8 a	20 a	13 ab	23 b		
	6.6 a	2.85 a	10 a	24 a	12 b	34 a		

Source: RAIJ e QUAGGIO (1990).

EXERCISE 2

The determination of P in a soil sample revealed an amount of 4 (<u>low</u>) and 24 (<u>medium</u>) mg dm⁻³ for methodologies "<u>B</u>" and "<u>C</u>", respectively. An experiment under this field site showed that the adition of 100 kg ha⁻¹ of P_2O_5 increased maize yield from <u>3.8 to 7.5 ton ha⁻¹</u>. respectively. <u>Which of the two methodologies</u> <u>was more effective</u> to evaluate soil P bioavailability?

A GOOD PROGRAM UNDER <u>PRECISION</u> <u>AGRICULTURE NUTRIENT MANAGEMENT</u> SHOULD <u>INITIALLY, AND ABOVE ALL, HAVE AN <u>EFFICIENT</u> <u>METHOD</u> TO PROPERLY EVALUATE THE <u>BIOAVAILABILITY OF PLANT NUTRIENTS</u></u>

WE SHOULD NOT MAKE OURSELVES CONFORTABLE. NEW AND BETTER POSSIBILI II. S MAY EXIST.

TEST THE EFFECTIVENESS OF CURRENT METHODS UNDER SITE FIELD CONDIT. 2N

HOW ARE THE METHODS FOR SOIL ANALY EVALUATING THE BIOAVAILABILITY OF NUTRIENTS IN YOUR REGION ?

NI

SUCCESS TO PA, SUCCESS TO AGRICULTURE, AND THANK YOU VERY MUCH FOR YOUR KIND ATTENTION

10.0

INTERNATIONAL PLANT NUTRITION INSTITUTE Website:

http://www.ipni.net

Telefone/fax – Brasil Office 55 (19) 3433-32<u>54</u>