
FERTILIZER LATINO AMERICANO 2013 TECHNICAL INNOVATION AND NICHE PRODUCTS - JAN 20 – 22, Hilton SP Morumbi, BRAZIL -

INNOVATIONS IN FERTILIZER AND FERTILIZER MANAGEMENT

Dr. Luís Ignácio Prochnow IPNI Brazil Program Director

INTERNATIONAL PLANT NUTRITION INSTITUTE (IPNI)

✓Not-for-profit organization dedicated to research and education for the <u>responsable management of plant</u> <u>nutrients</u> for the benefit of the human family.

"We train the trainers and influence the influencers"

Dr. Terry Roberts - President IPNI

FERTILIZER LATINO AMERICANO 2013 TECHNICAL INNOVATION AND NICHE PRODUCTS - JAN 20 – 22, Hilton SP Morumbi, BRAZIL -

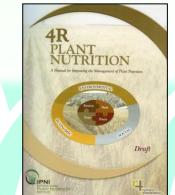
INNOVATIONS IN FERTILIZER AND FERTILIZER MANAGEMENT

QUESTIONS TO ADDRESS

- Are there innovations in fertilizer management? Are such innovations feasible at farm level?
- ✓ Are there inno **WWW.IPNI.ORG.B** them?
- ✓ Is the industry in general taking advantage of opportunities created by research?
- Is the industry leading forefront research in terms of new fertilizers?

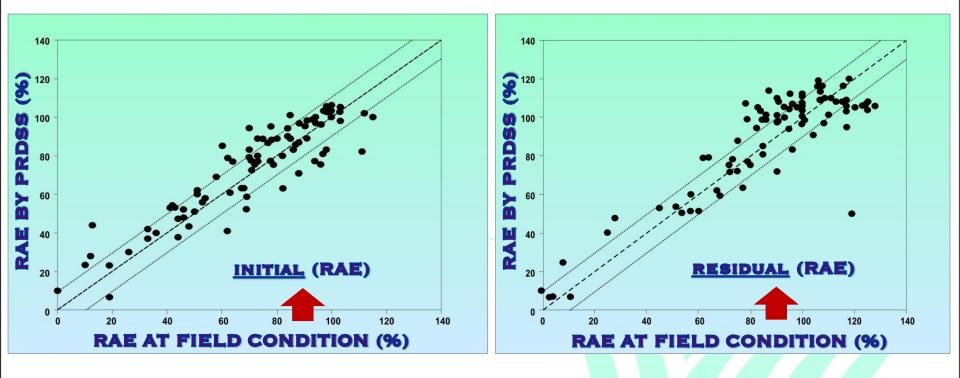
Many Factors Are Contributing to Changes in Nutrient Management and Educational Needs

- Major changes in fertilizer costs or crop prices
- Climate change induced shifts in cropping patterns, yields, soil processes
- ✓ Genetic changes that alter crop yields and <u>NUE</u>
- <u>Changes in crop species due to bioenergy</u>
- <u>Changes in plant parts harvested due to</u> <u>bioenergy</u>
- Manure composition changes due to distillers grains
- Application of bioash
- ✓ Government policy
- ✓ Fertilizer and equipment technology & tools


Many Techniques are available to help the farmers

LIPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

INNOVATIONS ON FERTILIZER MANAGEMENT


- ✓ Good field applied research aiming better nutrient use efficiency.
- Many good tools available to farmers for better nutrient use efficiency (publications, modeling, local research data, etc).
- ✓ Several joint initiatives across the globe for FBMPs.
- Great effort from industry on efficient use of nutrients aiming adequate agronomy, environment and social aspects (4R Nutrient Stewarship Program).
- ✓ We need to intensify good extension work.

APPLICATION OF THE RIGHT NUTRIENT SOURCE AT THE RIGHT RATE, TIME, AND PLACE

PHOSPHATE ROCK DECISSION SUPPORT SYSTEM (PRDSS)

HTTP://WWW-ISWAM.IAEA.ORG/DAPR/SRV/EN/HOME

INTERNATIONAL PLANT NUTRITION INSTITUTE

Source: U. Singh e S. H. Chien (2008), UNPUBLISHED

DATA.

INNOVATIONS IN FERTILIZER New Released Products

- Fertilizers with lower potential for N losses to the environment (e.g., urea with NBPT).
- Fertilizers specific to certain agronomic conditions (e.g., urea supergranule for flooded rice).
- More adequate nutrient composition to different soils and crops (e.g., inclusion of micronutrients).
- More efficient form of delivering nutrients (e.g., fluid fertilizers containing P for calcareous soils).

FROM PROBLEM TO SOLUTION THROUGH SCIENCE

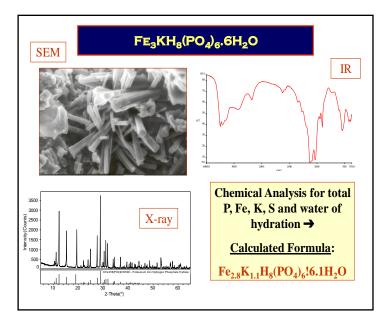
CHAPTER EIGHT

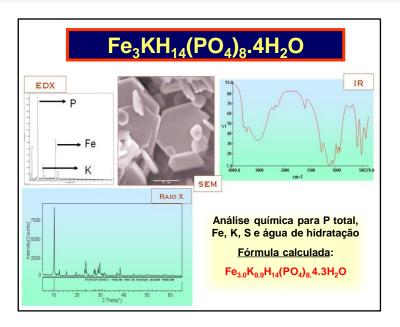
RECENT DEVELOPMENTS OF FERTILIZER PRODUCTION AND USE TO IMPROVE NUTRIENT EFFICIENCY AND MINIMIZE ENVIRONMENTAL IMPACTS

S. H. Chien,*1 L. I. Prochnow,[†] and H. Cantarella[‡]

Contents	
1. Introduction	268
2. Improving the Efficiency of Nitrogen Fertilizers	269
2.1. Controlled-release coated urea products	270
2.2. Slow-release urea-aldehyde polymer products	272
2.3. Urea supergranules for deep placement	273
2.4. Reducing nitrate leaching/denitrification by	
nitrification inhibitors	275
2.5. Reducing ammonia volatilization by urease inhibitors	275
2.6. Reducing ammonia volatilization and nitrate	
leaching/denitrification by combining urease and nitrifica	
inhibitors	283
2.7. Use of ammonium sulfate to enhance N efficiency of urea	
Improving the Efficiency of Conventional Phosphorus Fertilizers	
3.1. Coated water-soluble phosphorus fertilizers	288
3.2. Urea supergranules containing phosphorus and potassiur	
nutrients	290
3.3. Fluid versus granular water-soluble phosphorus fertilizer:	s 291
Use of Nonconventional Phosphorus Fertilizers	293
4.1. Phosphate rock for direct application	293
4.2. Mixture of phosphate rock and water-soluble P	296
4.3. Calcined nonapatite phosphate rock for direct application	1 297
4.4. Agronomic effectiveness of nonconventional acidulated	
phosphate fertilizers	300
5. New Granular Nitrogen and Phosphorus Fertilizers Containing	
Sulfur Nutrient	306
* Formerly with International Fertilizer Development Center (IFDC), Muscle Shoals, Alaba [†] International Plant Nutrition Institute (IPNI), Piracicaba, SP, Brazil [‡] Instituto Agronômico, Campina, SP, Brazi [†] Corresponding author. 1906 Beechwood Circle, Forence, Alabama, USA; email: nchienú	
	009 Elsevier Inc. Il rights reserved.
15514 0005-2115, 1201: 10.1010/ 30005-2115(09/01008-0 Al	rights reserved.

267


EXAMPLE


- ✓ **Premium Grade PR is decreasing worldwide.**
- ✓ <u>Tendency for lower water soluble P in final</u> <u>fertilizers.</u>

Is it really necessary for totally acidulated P sources to always have high water solubility?

IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

Synthesis, characterization and agronomic evaluation of iron phosphate impurities in superphosphates

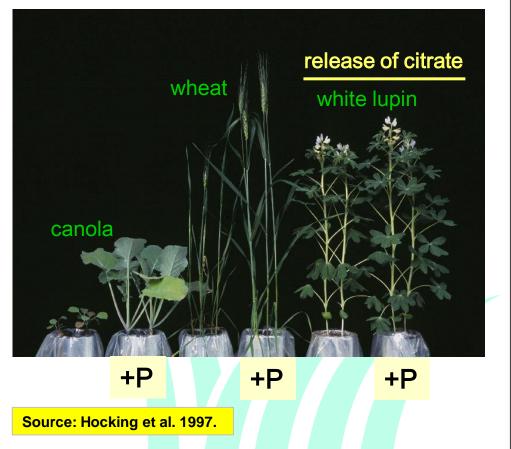
✓ RESEARCH HAS SHOWED <u>NOT TO BE NECESSARY</u> TO ALWAYS HAVE HIGH WATER-SOLUBILITY IN FULLY ACIDULATED PHOSPHATE FERTILIZERS. DATA OBTAINED SUGGEST THAT THE <u>WSP REQUIREMENT</u> SHOULD BE RELATED TO <u>THE SOIL SYSTEM, THE CROP AND THE CHEMICAL COMPOSITION OF THE FERTILIZER</u>.

Source: PROCHNOW, L.I.; CHIEN, S.H.; et al. Soil Science Society of America Journal. 67:1551-1563, 2003.

SCIENCE LOOKING FOR FERTILIZERS WITH LOWER POTENTIAL TO IMPACT THE ENVIRONMENT

Soils	P Sources			
	Control	PR	TSP	
Losses of Dissolved Reactive P (kg ha ⁻¹)				
Alvira	0,28	0,52	32,2	
Berks	0,18	0,39	14,5	
Watson	0,23	0,43	16,2	
Média*	0,23 c	0,45 b	20,9 a	
Total P Losses (kg ha ⁻¹)				
Alvira	0,35	0,83	33,2	
Berks	0,30	0,68	15,5	
Watson	0,31	0.72	19,6	
Média*	0,32 c <	0,74 b	22,7 a	

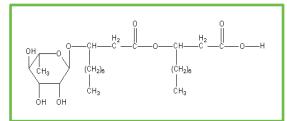
Cummulative P Losses

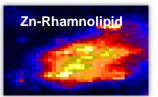

Improving P fertiliser use efficiency (PUE)

Modifying cultivars to improve PUE

- Placement/moisture interactions
- Alteration of chemistry in the fertilised zone
- Accurate diagnosis of P deficiency
- Modifying cultivars to improve PUE

Source: Courtesy of Mike McLaughlin.

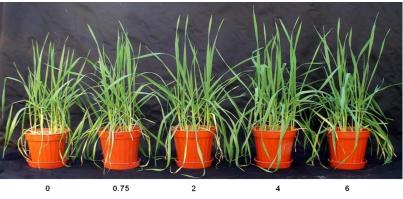



IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

"New" chelates to improve TE effectiveness

Rhamnolipid (RH)

Produced by bacteria, can diffuse easily across plant root membranes



Improving TE fertilizer efficiency for P fertilizers

New trace element fertilizers

- Physically protect TE from phosphate
- ✓ <u>Chemically protect TE from</u> <u>phosphate</u>
- ✓ Change granule chemistry
 - ✓ Fluid fertilizers

Response of wheat to additions of rhamnolipid

Rhamnolipid (mg/kg). All pots 2ppm Zn

INTERNATIONAL PLANT NUTRITION INSTITUTE

INNOVATIONS ON FERTILIZER (NEW SOURCES)

- Some good options already in the market (e.g., NBPT use to suppress N volatilization from urea).
- ✓ Some fertilizer companies working on new possibilities.
- Many good opportunities in literature that could translate into new products. Need for final field research.
- ✓ Advanced techniques applied in fertilizer research.
- ✓ Good opportunity to adapt plants to soil (genetic studies).
- Be careful with "snake oils". Only agronomic expertise can provide the necessary and adequate direction to follow.

INNOVATIONS IN FERTILIZER AND FERTILIZER MANAGEMENT

SHORT ANSWERS TO SOME QUESTIONS

- ✓ Are there innovations in fertilizer management? <u>Yes</u>.
- Are such innovations feasible at farm level? Many are. <u>Crop consultants are</u> <u>essential</u>.
- Are there innovations in fertilizer? <u>No recent real breakthroughs to be applied</u> in large scale but some interesting possibilities.
- ✓ If so, what are them? Products leading to lower N losses, So, etc.
- ✓ Is the industry in general taking advantage of opportunities created by research? In general more could be done.
- ✓ Is the industry leading forefront research in terms of new fertilizers? <u>More can be done. Creating experties in terms of forefront research is not an easy task. It is necessary to strongly invest in forming experts in fertilizer development.</u>

SUCCESS TO ALL, MOST ESPECIALLY TO THOSE RELATED TO PRODUCING FOOD, AND THANKS MUCH FOR YOUR ATTENTION!

Website: http://www.ipni.org.br

Telefone/fax: 55 (19) 3433-3254

