
Santa Maria-RS / Agosto 2013

Adubação Foliar em Arroz Irrigado: Bases Fisiológicas e Eficiência

Dr. Valter Casarin
Diretor Adjunto do Progama IPNI no Brasil

Dr. Luís I. Prochnow Diretor do Progama IPNI no Brasil

MSc. Silvia Regina Stipp

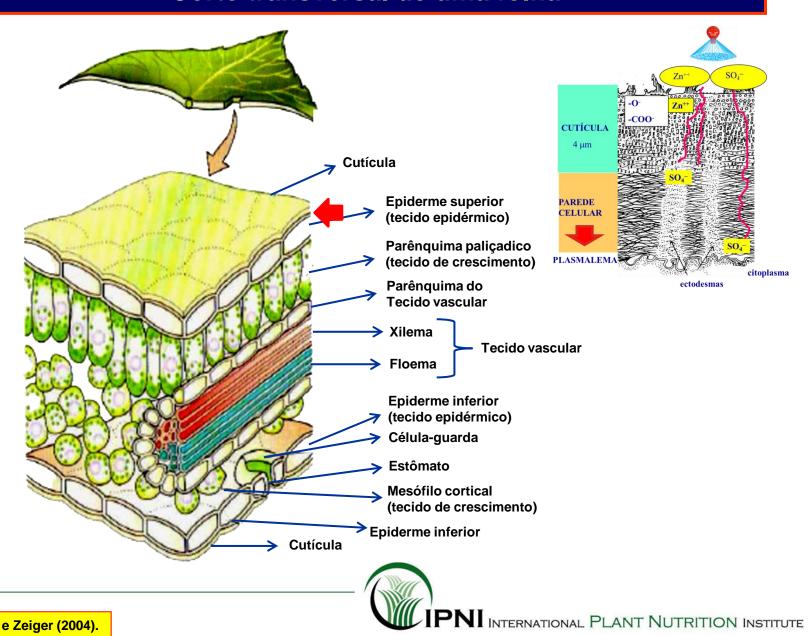
<u>IPNI</u>

MISSÃO

✓ O "International Plant Nutrition Institute" (IPNI) É UMA ORGANIZAÇÃO NOVA, SEM FINS LUCRATIVOS, DEDICADA A DESENVOLVER E PROMOVER INFORMAÇÕES CIENTÍFICAS SOBRE O MANEJO RESPONSÁVEL DOS NUTRIENTES DAS PLANTAS — N, P, K, NUTRIENTES SECUNDÁRIOS, E MICRONUTRIENTES — PARA O BENEFÍCIO DA FAMÍLIA HUMANA.

IPNI BRASIL - PROGRAMA BPUFs -

ADUBAÇÃO FOLIAR: INTRODUÇÃO GERAL


ADUBAÇÃO FOLIAR: CONSIDERAÇÕES INICIAIS

- ✓ Estou substituindo um especialista no assunto.
- √ Forma normal de fornecimento de nutrientes às plantas é via solo.
- ✓ Apresentação considera o que existe <u>publicado na lit</u>eratura, ou seja, informação que passou por revisão de especialistas da área.
- ✓ Existe pouco publicado sobre o tema em arroz.
- Extrapolações são realizadas baseado em evidências científicas. É o que de melhor se pode fazer de momento. Tais extrapolações necessitam, em alguns casos, de confirmação científica.
- ✓ A boa notícia é a de que o arroz tende a absorver nutrientes via foliar de forma mais eficiente que várias outras culturas testadas (café e citros).
- ✓ Enfoque em fontes.

Corte transversal de uma folha

Fonte: Taiz e Zeiger (2004).

Produção e acumulação de nutrientes pela cultura de arroz irrigado, sob diferentes níveis de fertilidade, em solo de várzea¹

Fertilidade	Parte da planta	Produção	N	Р	K	Ca	Mg	Zn	Cu	Mn	Fe
		(kg ha ⁻¹)		(k	g ha ⁻¹) ·				(g ha	a ⁻¹)	
Baixa	Parte áerea	5.406	29	6	169	22,00	9,00	443	22	2.728	2.952
	Grãos	4.307	80	19	13	1,91	4,38	177	152	218	620
	Total	9.713	109	25	182	23,91	13,38	620	174	2.946	3.572
Média	Parte aérea	7.987	41	8	154	24,00	11,00	413	24	3.320	3.135
	Grãos	5.523	56	14	14	1,80	6,14	133	125	228	908
	Total	13.510	97	22	168	15,80	17,14	546	149	3.548	4.043
Alta	Parte aérea	10.726	55	11	207	36,00	16,00	642	53	4.902	3.927
	Grãos	5.464	61	15	13	1,68	6,10	134	140	228	884
	Total	16.190	116	26	220	7,68	22,10	776	193	5.130	4.811
Média + adubo verde	Parte aérea	6.879	41	7	144	24,00	9,00	334	26	3.668	3.533
	Grãos	6.332	72	17	15	2,57	7,40	157	139	214	1.054
	Total	13.211	113	24	159	26,57	16,40	491	165	3.882	4.587

⁽¹⁾ Os valores são média de três cultivos. No tratamento fertilidade média + adubo verde os dados são de apenas dois anos.

Faixas de suficiência de micronutrientes no tecido foliar de plantas de arroz irrigado

Micronutriente					
В	Cu	Fe	Mn	Мо	Zn
mg kg⁻¹					
20-100	5-20	70-300	30-600	0,5-2,0	20-100

Adubação foliar: Definição

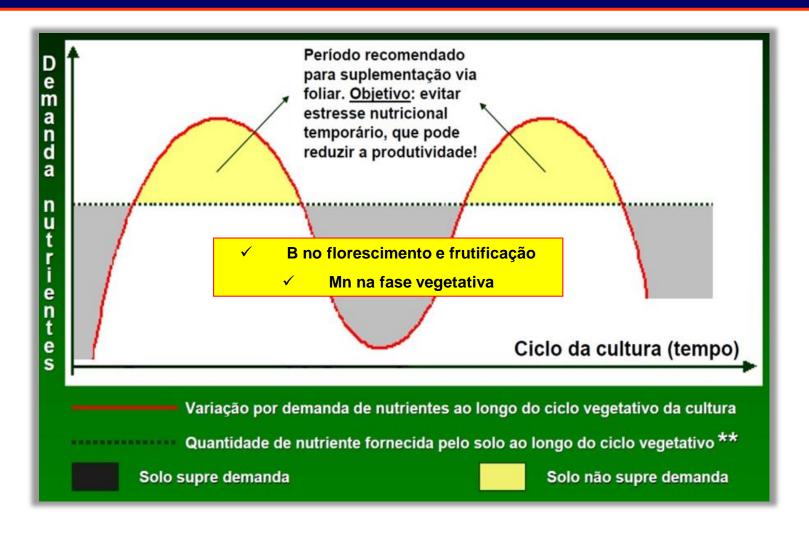
✓ Aplicação de <u>nutrientes em solução ou suspensão</u> na parte aérea das plantas, visando <u>complementar</u> a nutrição da planta, principalmente nos períodos de grande consumo de nutrientes e, assim, favorecer o equilíbrio nutricional

Adubação foliar: Possibilidades

- ✓ Complementar aplicação via solo
- √ Fornecimento em épocas de alta demanda pela planta
- ✓ Reduzir desequilíbrios nutricionais em situações de "stress"
 - ✓ Melhorar aproveitamento dos nutrientes

Adubação foliar vs adubação via solo

Vantagens:


- ✓ Alto índice de utilização dos nutrientes via foliar
 - ✓ Doses totais em geral são menores
- ✓ Respostas rápidas (adubação de correção "salvação")

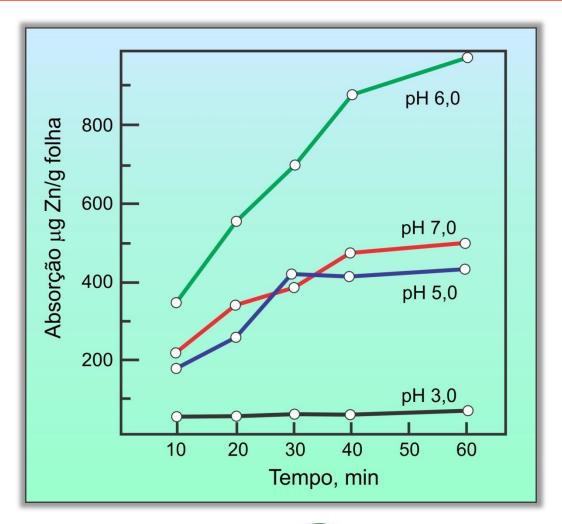
Desvantagens:

- ✓ Custo de várias aplicações pode ser alto a não ser quando combinada com tratamentos fitossanitários
 - ✓ Efeito residual muito menor
 - ✓ Problemas de compatibilidade e antagonismo

Flexibilidade: Aplicação época de maior demanda

ADUBAÇÃO FOLIAR:

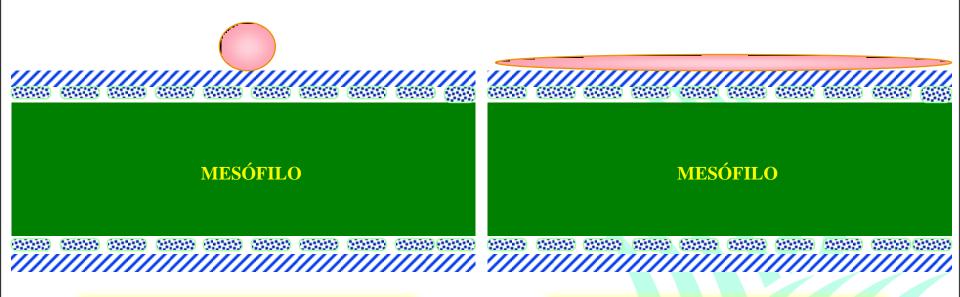
FATORES QUE AFETAM A EFICIÊNCIA



Fatores que afetam a eficiência da adubação foliar

Planta	Meio Ambiente	Solução
Tipo de cutícula	Temperatura	Concentração
Idade da folha	Luz	Dose
Número de estômatos	Fotoperíodo	Aplicação
Presença de tricomas	Intensidade do vento	Forma química
Turgor	UR	Adjuvantes
Umidade superficial	Seca	pН
CTC	Horário	Polaridade
Estado nutricional	Estresse nutricional	Higroscopicidade
Estádio de crescimento		Interações

Efeito do pH na absorção do zinco pelo cafeeiro



pH com máxima absorção

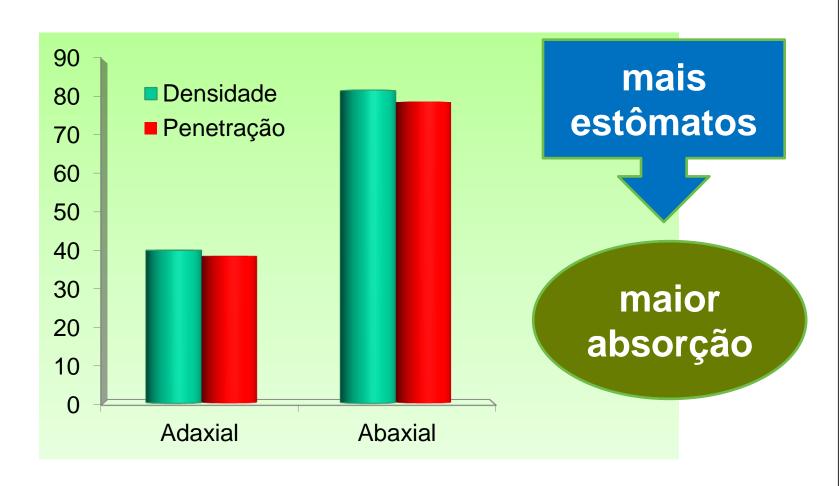
Nutriente	pH da solucao		
Nitrogênio (ureia)	3,0 - 4,0		
Fósforo	3,0		
Potássio	3,0 – 4,0		
Boro	4,0		
Zinco	6,0		

Umidade Superficial - Efeito Espalhante

CORTE ESQUEMÁTICO DE UMA FOLHA

CORTE ESQUEMÁTICO DE UMA FOLHA

Espalhamento



Com Espalhante

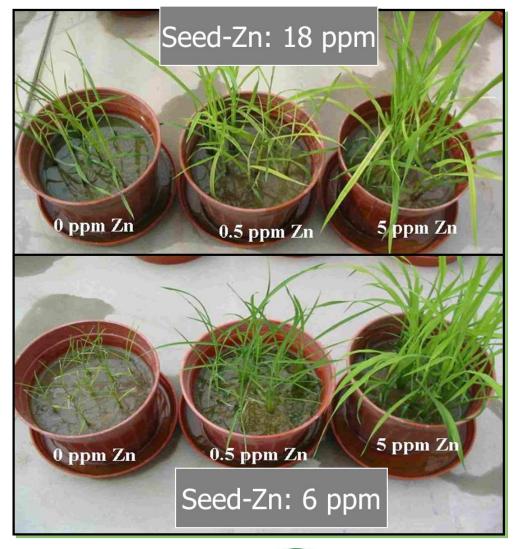
Sem Espalhante

Penetração Estomatal de Íons

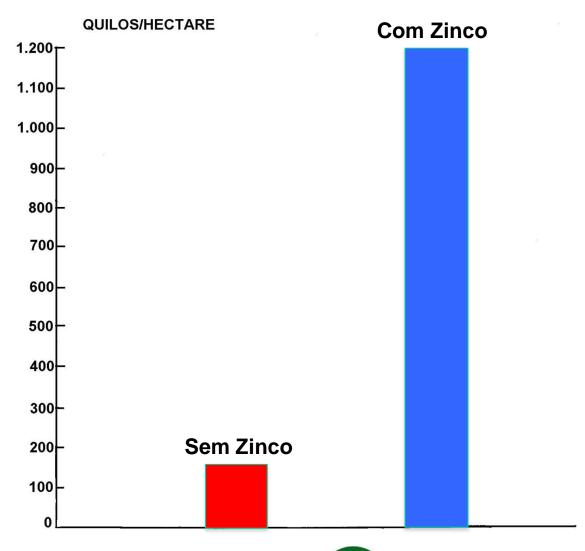
Efeito do horário de aplicação do adubo foliar na cultura da soja

Horas do dia	Produtividade (kg/ha)	Índice
8h	2.350	114
11h	2.180	106
14h	2.060	100
18h	2.550	124

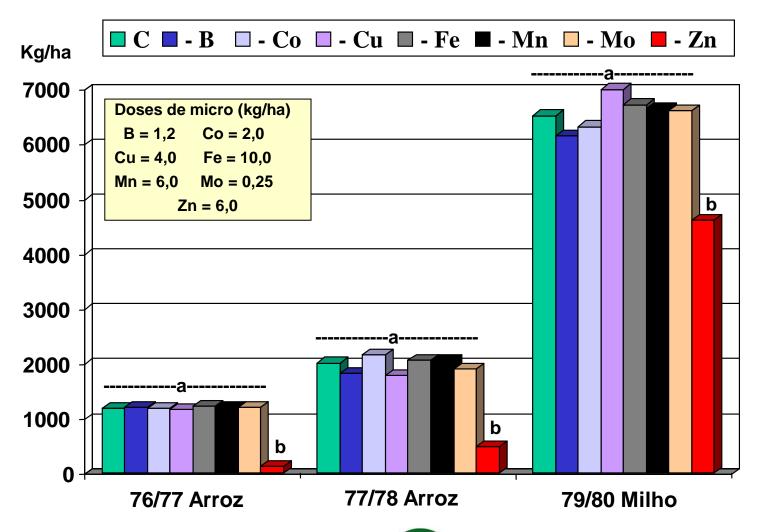
Horário quente leva a secamento mais rápido



MICRONUTRIENTES EM ARROZ



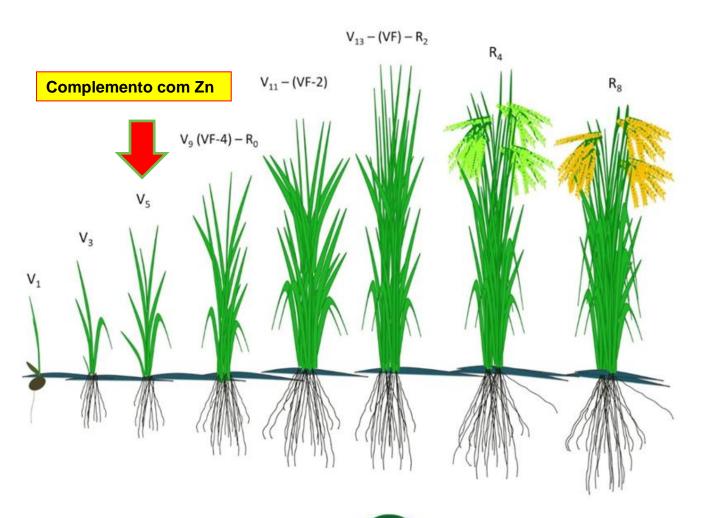
Arroz em solo deficiente em Zn



Resposta do arroz ao zinco

Micronutrientes vs produção de arroz e milho (LE, argiloso, cerrado) - técnica do elemento faltante

ADUBAÇÃO FOLIAR <u>e</u> CONCEITO 4R


Boas Práticas para Uso Eficiente de Fertilizantes

Aplicação das fontes corretas de nutrientes nas doses, hora e local corretos

Fases fenológicas do arroz

Resumo até aqui

- ✓ Aumento de produtividade exige manejo adequado dos fatores de produção e em especial da nutrição das plantas
 - ✓ Adubação foliar, quando viável, se dá principalmente com o objetivo de complementação
 - ✓ Para o arroz o nutriente mais importante via foliar é o Zn
 - √ Vamos focar em fontes

ADUBAÇÃO FOLIAR: FONTES PARA ZINCO

Fontes foliares

- ✓ <u>Solúveis em água</u>: sulfatos, cloretos e nitratos (sulfato de zinco, cloreto de zinco, nitrato de zinco, etc.);
- ✓ <u>Insolúveis em água</u>: óxidos, carbonatos e fosfatos (óxido de zinco, carbonato de zinco, etc.)

Fontes solúveis em água

✓ Sulfatos:

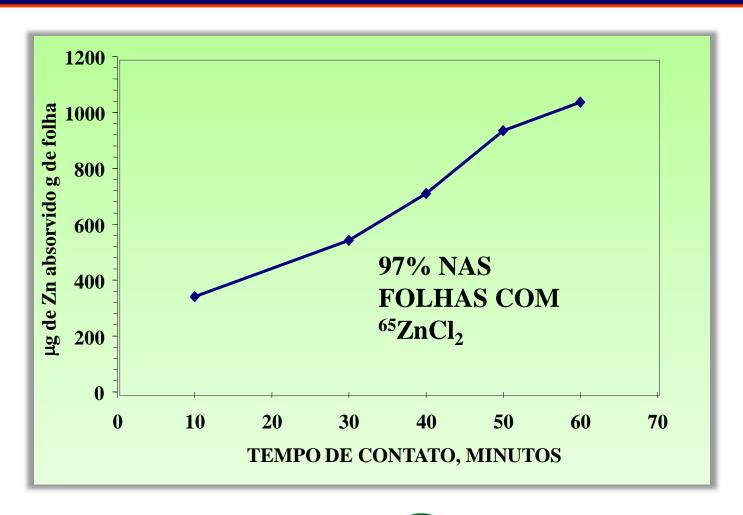
fontes mais tradicionais e usuais

✓ Cloretos:

mais eficientes do ponto de vista agronômico e proporcionam diversos benefícios

✓ Nitratos:

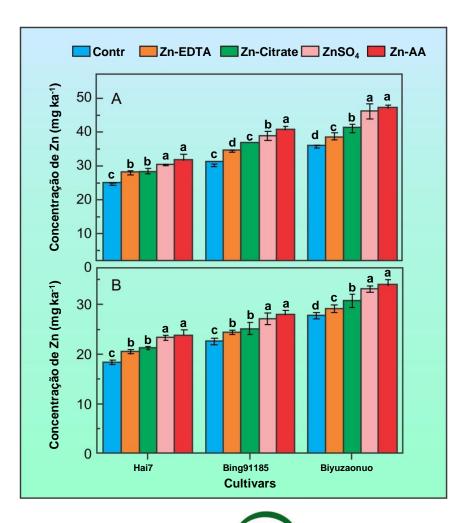
✓ situam-se entre os cloretos e os sulfatos mas do ponto de vista econômico são normalmente mais caras


Efeito da presença de cloreto de potássio na solução pulverizante sobre níveis de zinco nas folhas de cafeeiro. Média de dois locais.

Tratamentos	Zn (mg kg ⁻¹)		
Sulfato de zinco (1,5 %)	25		
Sulfato de zinco (1,5 %) + ureia (12 %)	30		
Sulfato de zinco (1,5 %) + KCI (12 %)	54		

⁽¹⁾ amostras coletadas um mês após a pulverização

Absorção de Zn por folhas de cafeeiro


Sais solúveis de micronutrientes metálicos

Parte de planta	Fonte de Zinco					
de café	Cloreto	Nitrato	Sulfato	Quelato		
	μg/planta de Zn					
Raízes	2	2	4	19		
Caule e ramos abaixo	4	5	4	10		
Folhas abaixo	5	5	4	31		
Folhas tratadas	609	357	80	216		
Caule e ramos acima	5	6	5	10		
Folhas acima	8	7	6	17		
Total	633	382	103	303		

- ✓ Folhas tratadas: Cloreto > Nitrato > Quelato > Sulfato
- ✓ <u>Translocação</u>: Quelatos são as que propiciam movimentação

Concentração de Zn nos grãos de arroz das três cultivares testadas. (A) concentração de Zn no arroz integral. (B) concentração de Zn em arroz polido. As barras indicam os erros-padrão das médias (n = 4). Letras diferentes indicam diferenças significativas entre os tratamentos com Zn de acordo com o teste LSD (P < 0,05)

Teores foliares de zinco e manganês em citros

Tratamentos	Teor Zn (ppm)	Teor Mn (ppm)
Controle	16,2	37,0
Sulfatos	36,0 (4.400 g)	63,0 (3.000 g)
Cloretos	36,0 (800 g)	54,0 (480 g)

✓ Fonte cloreto é mais eficiente em aumentar absorção de Zn mas sulfato, em maiores doses, também pode produzir efeitos similares.

Dose de Zinco para aplicação em arroz

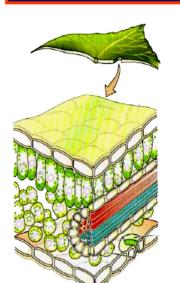
Base Sulfato: 300 a 500 g/ha

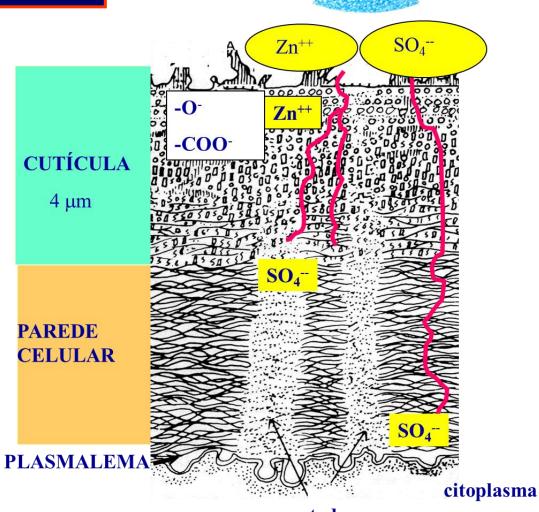
Base Cloreto: 80 a 100 g/ha

Absorção de Mn de diferentes fontes e transporte após um período de 30 dias da aplicação nas folhas de laranjeira

Fonte de Mn	Absorção (cpm)	Transporte (cpm)
Sulfato	521	71
Cloreto	3389	689

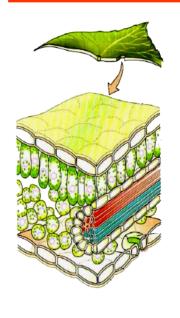
Por que a maior eficiência do zinco quando associado ao cloreto?

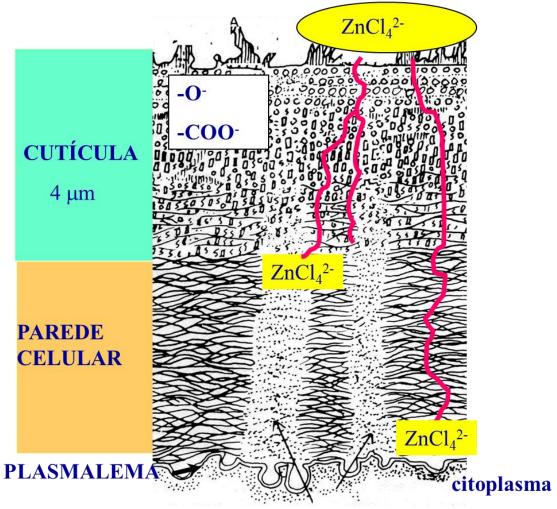

Reações envolvendo o zinco


Reação de equilíbrio	pН	Log K°		
Sulfato				
$ZnSO_4 \longrightarrow Zn^{2+} + SO_4^{-2}$		3,41		
Cloreto (Complexos)				
$Zn^{2+} + Cl^{-} \longrightarrow ZnCl^{+}$	8,1 - 8,9	0,43		
$Zn^{2+} + 2Cl^{-} \longrightarrow ZnCl_2^0$	7,6 - 8,5	0,00		
$Zn^{2+} + 3Cl^{-} \longrightarrow ZnCl_{3}^{-}$	5,9 - 6,9	0,50		
$Zn^{2+} + 4Cl ZnCl_4^2$	4,0 - 5,0	0,20		

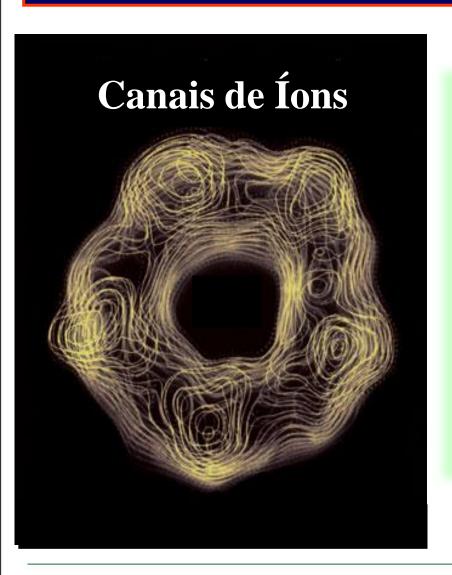
Soluções normalmente na faixa de pH de 4 a 5

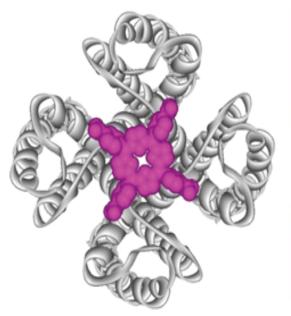
Fonte Sulfato

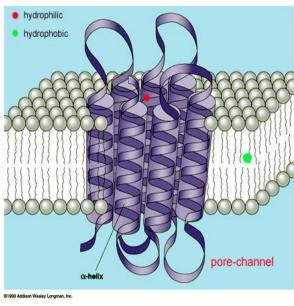


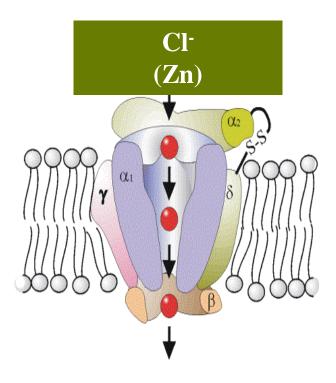

ectodesmas

Fonte Cloreto

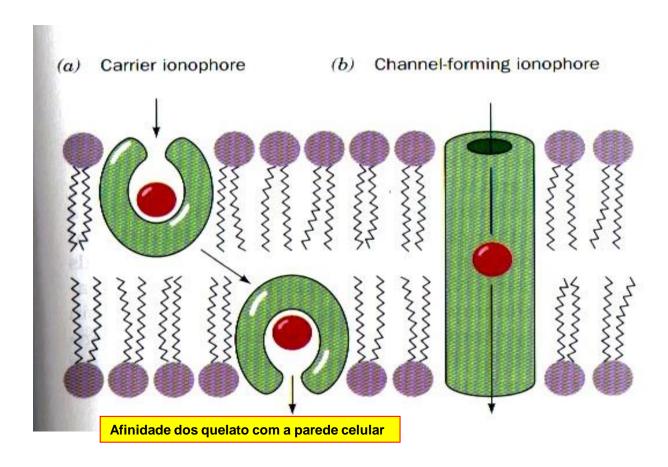



Transporte através das membranas plasmalemas



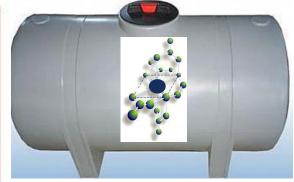

Até o momento sabemos que os canais estão envolvidos no transporte de íons K⁺, Cl⁻, Ca⁺⁺ e água.

Canais de Potássio, Cloro e Cálcio



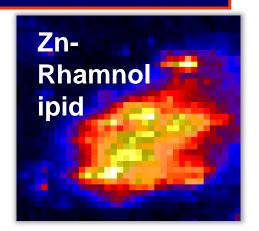
Transporte através das membranas





Fertilizantes Quelatizados

- ✓ São formados pela combinação de um agente quelatizante através de ligações coordenadas.
- ✓ A estabilidade da ligação quelato-metal determina, geralmente, a disponibilidade dos nutrientes aplicados para as plantas.
- ✓ Dissociam-se pouco em solução: principal vantagem dos quelatos.
- ✓ Portanto: menos susceptível as reações que os precipitem, assim fica mais disponível as plantas.
- ✓ Características desejáveis
 - Facilmente absorvido pela planta
 - Facilmente translocável dentro da planta
 - Facilmente decomposto dentro da planta


"Novos" Quelatos para Aumentar a Eficiência de Absorção de Micronutrientes

Rhamnolipid (RH)

Produced by bacteria, can diffuse easily across plant root membranes

Polyethyleninime (PEI) polymer with high Zn-complexing ability

Response of wheat to additions of rhamnolipid

Rhamnolipid (mg/kg). All pots 2ppm Zn

IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

CONSIDERAÇÕES FINAIS

- A adubação foliar, embora tenha importância econômica significativa na área de fertilizantes, tem recebido atenção limitada da pesquisa científica
- A menos que possam ser combinadas com tratamentos fitossanitários os custos extras de múltiplas aplicações foliares podem ser altos
- A presença de um nutriente na solução pode afetar negativamente a absorção de outro, principalmente nas soluções multinutrientes
- A fonte natural de aplicação de nutrientes é via solo. A adubação foliar pode, no entanto, em situações específicas ser útil no sentido de providenciar nutrientes de forma a se complementar a nutrição das culturas
- O nutriente com maior potencial de resposta para o arroz é o Zn
- Bons resultados com a adubação foliar deve considerar os seguintes aspectos:
 - ✓ Utilizar da análise de tecido vegetal para identificar problemas nutricionais
 - ✓ A melhor época para aplicação, a dose para alcançar o rendimento esperado, a fonte de fertilizante, o local adequado
 - ✓ Sempre devem ser consideradas as condições ambientais prevalecentes no momento e após a aplicação

✓ Palestra no site do IPNI (brasil.ipni.net)

✓ E-mails:

vcasarin@ipni.net;

Iprochnow@ipni.net

VALOR DO SERVIÇO: COMO AVALIAR?

- ✓ UM TÉCNICO É CHAMADO POR UMA EMPRESA PARA AVALIAR O PROBLEMA EM UM COMPUTADOR MUITO VALIOSO.
- ✓ APÓS ESTUDO DO CASO O TÉCNICO DESLIGA O COMPUTADOR, ABRE UM COMPARTIMENTO ESPECÍFICO E DÁ UMA VOLTA E MEIO EM UM PARAFUSO.
- ✓ RELIGA ENTÃO A MÁQUINA QUE PASSA A FUNCIONAR PERFEITAMENTE.
- √ O DONO DA EMPRESA LHE DÁ OS PARABÉNS E PERGUNTA QUANTO É O SERVIÇO.
- √ FICA FURIOSO AO TER CONHECIMENTO QUE O VALOR COBRADO É DE R\$ 5.000. DIZ QUE NÃO VAI PAGAR A MENOS QUE O TÉCNICO ENVIE UMA FATURA ESPECIFICANDO TUDO O QUE FOI FEITO.
- √ O TÉCNICO BALANÇA A CABEÇA E VAI EMBORA SATISFEITO.
- √ NO OUTRO DIA A FATURA É ENVIADA E APÓS LEITURA O DONO DA EMPRESA DECIDE PAGAR

 DE IMEDIATO OS R\$ 5.000,00.
- ✓ A FATURA ESPECIFICAVA:
 - APERTAR UM PARAFUSO R\$ 10,00
 - * SABER QUAL PARAFUSO APERTAR R\$ 4.990,00

