Agronomic Performance of Phosphate Fertilizers Varying in Solubility to Soybean in Oxisol of Brazilian Cerrado

<u>Tuesday - November 04th, 2014</u> SSSA Division: Soil Fertility & Plant Nutrition - Crop response to and soil dynamics of phosphorus and sulfur -

Background

Weathered soils & P management

- ✓ Natural low P
- ✓ Fe and Al oxides
- ✓ Specific adsorption
- ✓ Precipitation

Itiquira, MT

Consequence

Background

- Most of the <u>"Premium" PR</u> has been mined worldwide.
- Therefore, fertilizer industry is forced to use even more <u>lower grade PR.</u>

Consequences

- **Beneficiation / concentration**
- High levels of impurities
- <u>Water insoluble P in acidulated fertilizer</u>
- Legislation requirements are not met

Background

Fertilizers & Legislation requirements

Insoluble compounds do not seem to reduce agronomic effectiveness,

but.....the Legislation Requirements are not met.

Mullins and Sikora (1992, 1995) Prochnow et al. (2003, 2008)

Objective

To evaluate the agronomic performance of SSP-based fertilizers varying in *"Fi Index"* to soybean in Oxisol of Brazilian Cerrado.

Methods

Overview

 $\frac{4 \text{ SSP-based fertilizers}}{(60 \text{ kg ha}^{-1} \text{ P}_2\text{O}_5)}$

Soybean (TMG 132 RR)

Oxisol (63% clay / MPAC: 1315 mg kg ⁻¹)																
pН	P	S	K	Ca	Mg	Al	H+Al	SB	CTC	V	m	В	Cu	Fe	Mn	Zn
CaCl ₂	mg dm ³		mmol _c dm ⁻³				- % -			mg dm ³						
4,9	10	4	0,4	27	18	1	52	45,6	97,8	47	1	0,16	0,4	50	2,3	0,3

Methods

Fertilizers treatments

Commercial SSP-based fertilizer → LAGAMAR PR (Northeast Brazil)

High level of impurities

Very difficult beneficiation

Limited information available

Fertilizer	PR		P ₂ O ₅	Al ₂ O ₃	Fi				
		Total	Citrate + H ₂ O	H ₂ O	Fe ₂ O ₃	%			
			9	%					
SSP-(60%)	Lagamar	18	17	10 ←	— 2.8	59			
SSP-(86%)	Catalão	22	21	18 ←	— 1.3	86			
Well-k	nown = Refe	erence		International F	^D LANT NUTRITIC	ON INSTITUTE			

Methods

Design & Experimental units

Results

Soybean Yield

Annual evaluation

Fresh fertilizer application to new plots

Results

Soybean Yield

Evaluation - year 3

Fresh application Vs residual effect

Results

Soil available P

а

а

Implication

Fertilizer industry will be forced to process marginal PR resources.

 To the best of our knowledge, lower grade SSP-based has not been evaluated yet in long term under field conditions to validate previous findings of incubation and pot experiments.

 Results indicate the possibility of legislation revision in order to reduce the "Fi index" requirement, which would <u>optimize the use of marginal</u> <u>grade PR.</u>

Conclusions

- The agronomic performance of SSP-based fertilizers <u>is unlikely to be</u> <u>affected</u> by insoluble P impurities (~ Fi 60%), despite the legislation requirements;
- SSP-based fertilizers with Fi as low as 60% can be agronomically as efficient as fertilizers with Fi ≥ 85%, even in a highly P fixing Oxisol;

 Acidulation of low grade PR is a <u>reasonable option</u> to obtain SSPbased fertilizers (even low Fi), mainly in countries that <u>strongly</u> <u>depend on low grade phosphate resources.</u>

Acknowledgements

Foundation for Supporting Research in the State of Sao Paulo

Thank you !

