

XIV Workshop CTC Comigo – Agricultura Riio Verde/GO – 28 Agosto 2015

Construção do Perfil do Solo

Dr. Eros Francisco IPNI Brasil efrancisco@ipni.net

IPNI

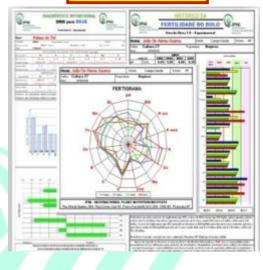
✓ O "International Plant Nutrition Institute" (IPNI) é uma <u>organização</u> <u>nova, sem fins lucrativos</u>, dedicada a <u>desenvolver e promover informações científicas sobre o manejo responsável dos nutrientes das <u>plantas</u> – N, P, K, nutrientes secundários, e micronutrientes – para o benefício da família humana.</u>

Material Educativo

http://brasil.ipni.net

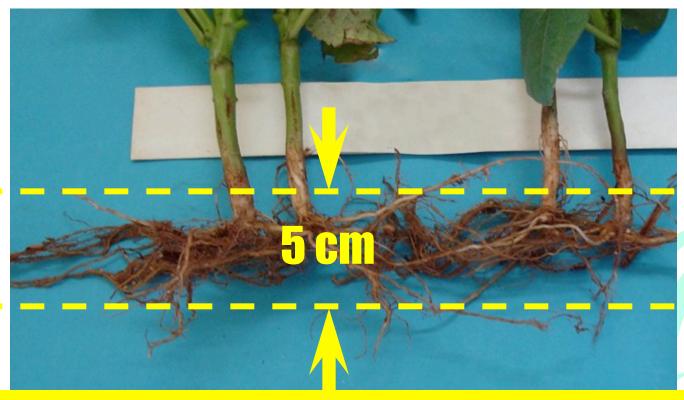
Material Educativo

Ferramentas via Website


Recomendação de adubação e calagem

http://brasil.ipni.net

DRIS

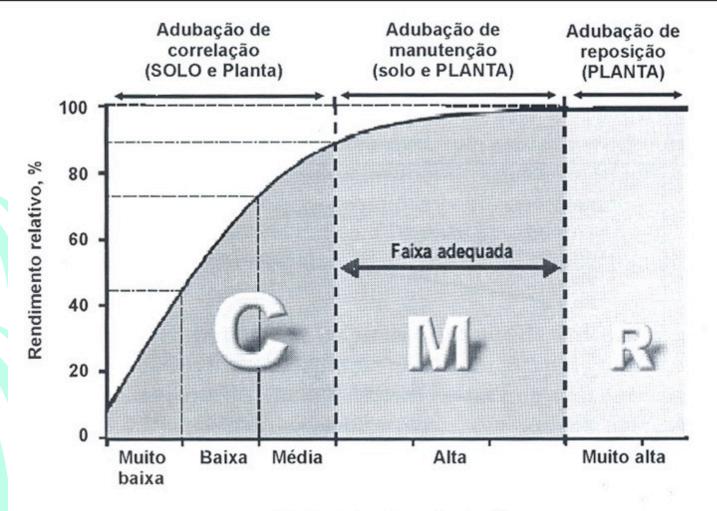


Perfil de solo: um pouco de reflexão

Provável efeito: (i) compactação, (ii) acidez, (iii) fertilidade superficial ou (iv) combinação de dois ou mais fatores

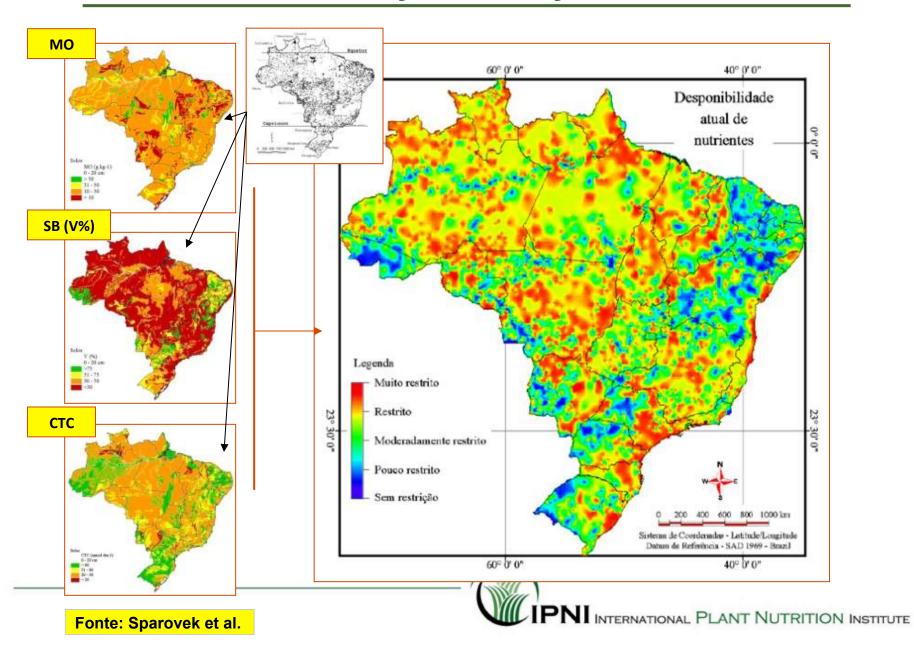
Nestas condições, as raízes sempre crescerão superficialmente

Perfil de solo: um pouco de reflexão

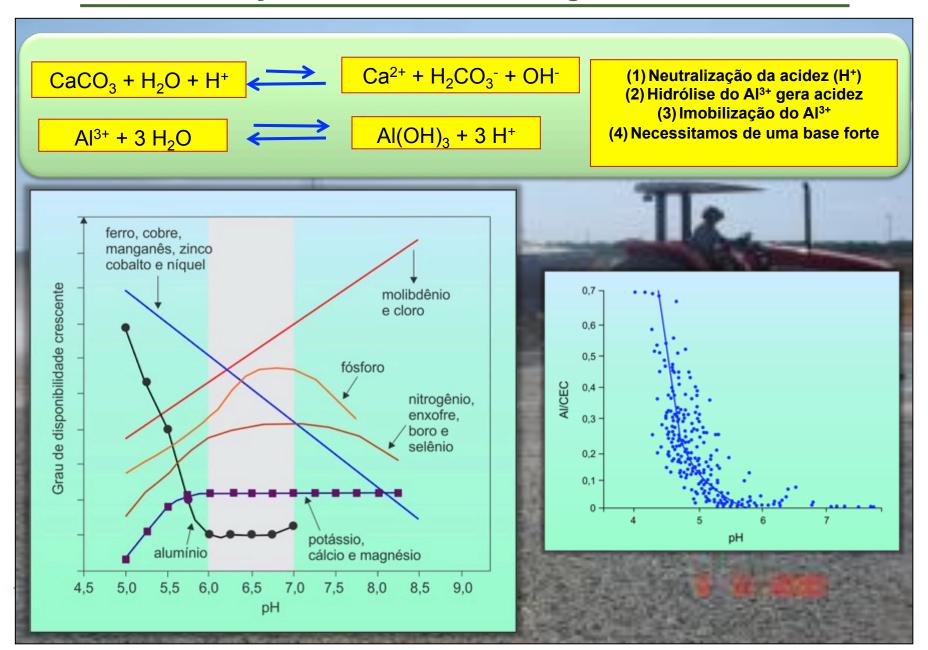

Análise química do perfil de um Latossolo Vermelho muito argiloso (650 g kg⁻¹ de argila), cultivado há 35 anos com soja, milho e algodão

Prof	рН	MO ⁽¹⁾	P ⁽²⁾	S ⁽³⁾	K ⁽²⁾	Ca ⁽⁴⁾	Mg ⁽⁴) AI ⁽⁴	H+AI ⁽⁵⁾	СТС	SB	V	m
(cm)	CaCl ₂	g/dm³	mg	J/dm³		mmol _c /dm ²					%		
0-5	5,4	42	19	10	2,6	35	20	0,0	22	82,2	60,2	73	0,0
5-10	4,7	31	22	8	2,0	22	7	2,6	41	74,0	33,0	45	7,7
10-20	4,4	29	15	10	1,7	18	5	1,8	46	72,4	26,4	36	6,8
20-30	4,2	22	5	33	1,3	6	2	6,1	51	61,6	10,6	17	39,6
30-40	4,2	19	5	74	1,1	3	1	5,8	46	52,2	6,2	12	53,2
40-60	4,6	14	4	74	1,2	7	2	2,4	27	38,4	11,4	30	19,0
60-90	4,9	11	4	70	0,5	7	3	1,4	23	34,0	11,0	32	11,8
90-120	5,4	9	4	19	0,1	4	2	<0,1	18	24,2	6,2	26	<0,1
120-150	5,4	7	4	8	0,1	3	1	<0,1	16	20,2	4,2	21	<0,1
150-180	5,7	7	3	6	0,2	2	0	<0,1	15	17,4	2,4	14	<0,1
180-210	5,7	6	3	5	0,2	3	1	<0,1	14	18,4	4,4	24	<0,1
210-240	5,7	6	3	6	0,1	2	2	<0,1	13	17,2	4,2	24	<0,1
240-270	5,8	6	4	7	0,1	3	1	<0,1	12	16,2	4,2	26	<0,1
Fonte: Fundação MT/PMA (2013) NATIONA					PLANT I	PLANT NUTRITION INSTITUTE				* Valores oriundos de uma única repetição			

Disponibilidade de nutrientes



Nutriente no solo, mg dm⁻³

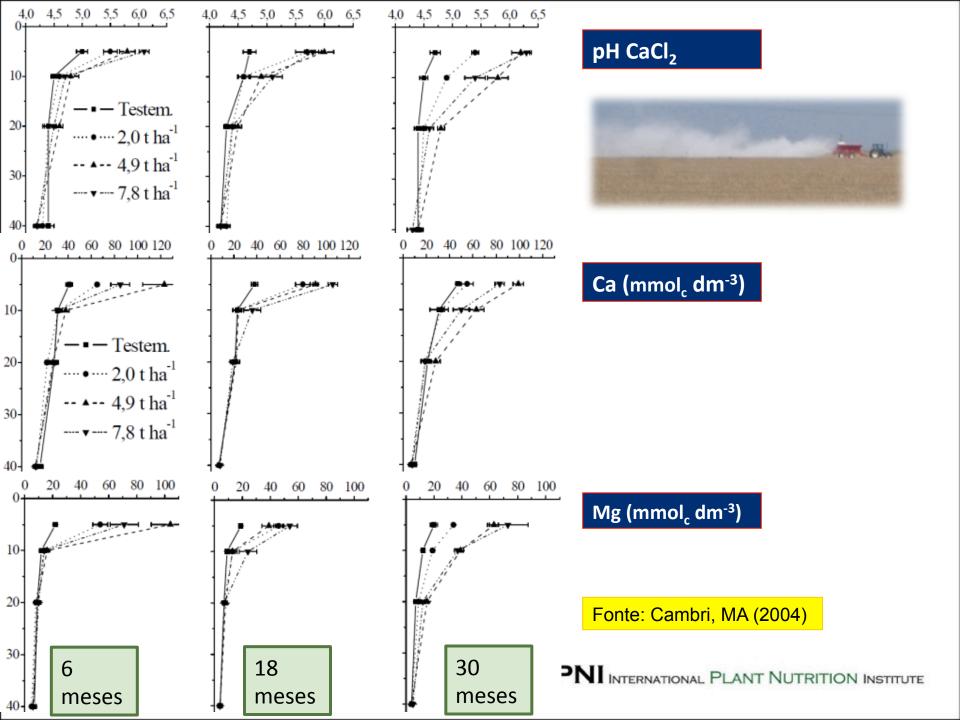

Relação entre o rendimento relativo de uma cultura e o teor de um nutriente no solo e as indicações de adubação para cada faixa de teor no solo.

Classes de Restrição em Relação à Fertilidade

Reações Envolvidas na Calagem do Solo

Calagem do Solo: critérios de recomendação

1. Critério dos teores de Al, Ca e Mg trocáveis


- > Cenário 1: argila >15%, Ca+Mg <2 cmol_c/dm³ e CTC >4 cmol_c/dm³
- ✓ NC (t/ha) = $[2 \times AI + 2 (Ca + Mg)] \times f$ f = 100 / PRNT
- > Cenário 2: argila > 15%, Ca+Mg > 2 cmol_c/dm³ e CTC > 4 cmol_c/dm³
- \checkmark NC (t/ha) = [2 x Al] x f
- Cenário 3: argila < 15%</p>
- ✓ NC $(t/ha) = [2 \times Al] \times f$
- ✓ NC (t/ha) = [2 (Ca + Mg)] x f

2. Critério da elevação da saturação por bases

✓ NC (t/ha) =
$$[(V2 - V1) \times CTC / 100] \times f$$
 f = 1,5 p/ solos arenosos 2,0 p; solos argilosos

Fonte: Souza e Lobato (2004).

Calagem do Solo: que tipo de calcário aplicar?

✓ Teor de Ca e Mg✓ PRNT✓ RE (granulometria)

Calcário	PRNT	PN	RE	PN 30 dias	PN após 30 dias
Α	80	89.5	89.5	80.1	9.4
В	80	100	80	80	20.0
С	80	80	100	80	0.0

Calagem do Solo: método da V%

Quantidade de calcário calculada pelo método da saturação por bases (t/ha) para alcançar V% de 40, 50 e 60%, e a quantidade real de calcário (utilizando o método de saturação de bases + fator de correção) para alcançar o V% desejado, em área de primeiro ano de cultivo no Cerrado.

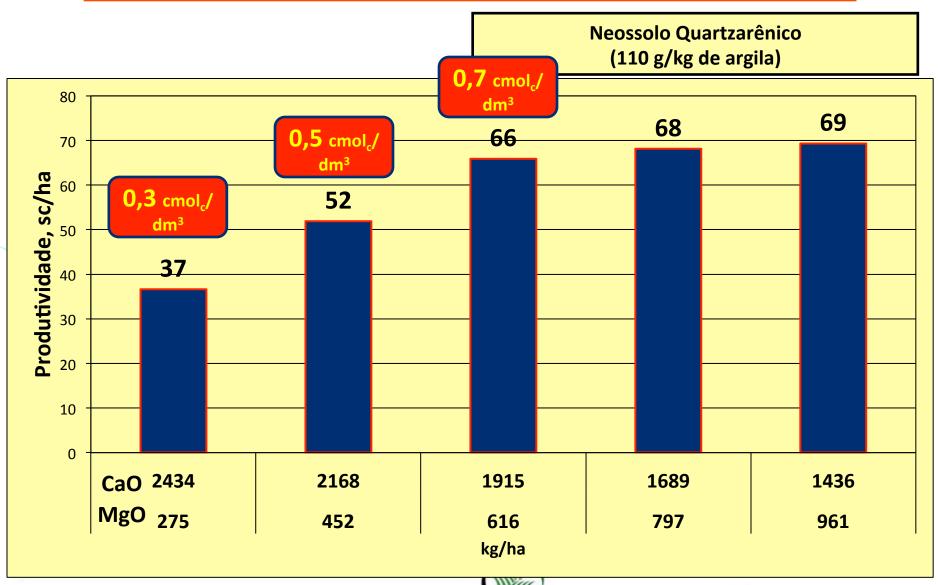
Local	V% inicial	V% almejada	Cal (t/ha) PRNT 80%	V% obtida	Calcário necessário (t/ha)
Campa Nova	8,3	40	2,5	24,6	4,6
Campo Novo Parecis-MT	8,3	50	3,3	30,6	5,8
Parecis-ivi i	8,3	60	4,1	36,7	6,9
Nova Mutum-	9,0	40	2,8	26,8	4,1
	9,0	50	3,7	33,8	5,6
MT	9,0	60	4,7	39,4	7,4

Fonte: Fundação MT/PMA – Datos no publicados

Qualidade operacional

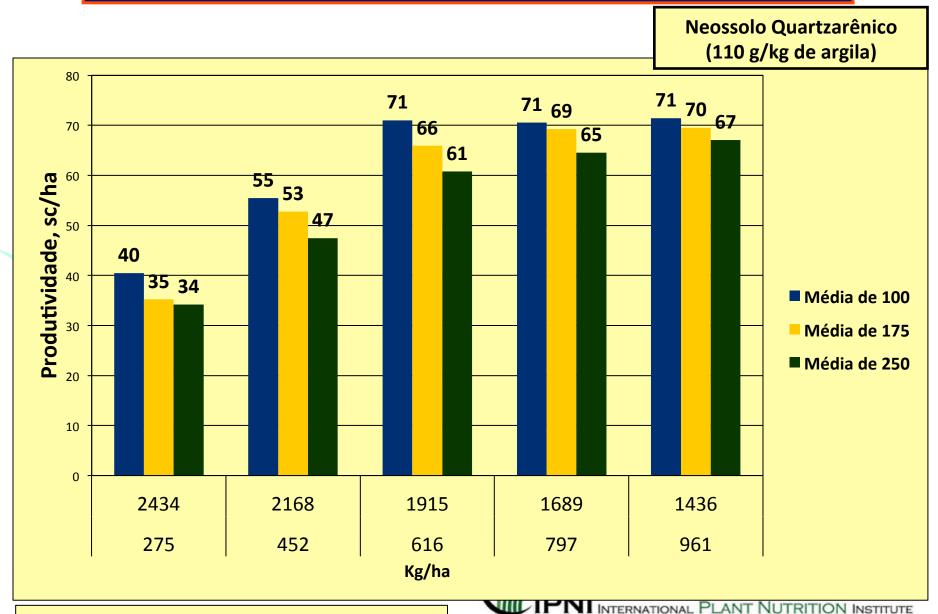
Fonte: Márcio Veronese, Fundação MT/PMA (2012)

Qualidade operacional



IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

Fonte: Haroldo Hoogerheide, Fundação MT (2010).


Efeito de Mg na produtividade de soja

Fonte: Fundação MT/PMA – Safra 2009/2010

Efeito de Mg na produtividade de soja

Fonte: Fundação MT/PMA – Safra 2009/2010

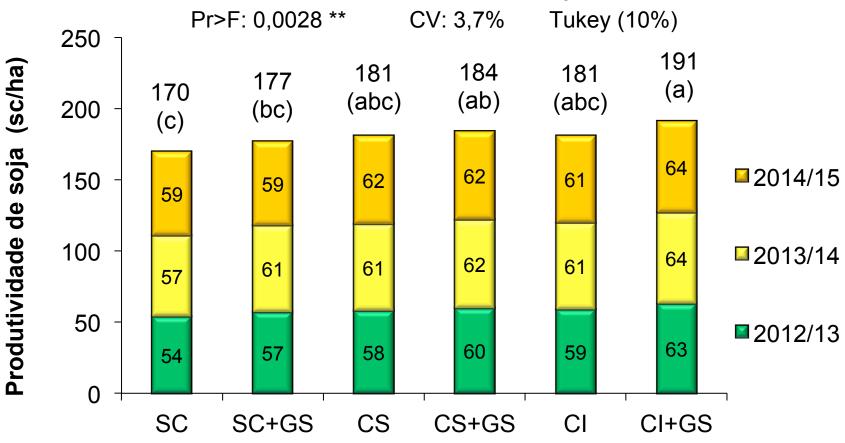
Atributos químicos iniciais do solo (Setembro/2012*)

Prof.	рН	Р	K	S	Ca	Mg	Al	H+AI	СТС	МО	V	m	Zn	Cu	Mn	Fe	В
(cm)	Prof. pH (cm) CaCl2		ng dm	-3		- cmc	olc dr	n ⁻³			- % -			m	ıg dm	-3	
0-20	4,7	9	32	9	1,8	0,7	0,3	4,8	7,4	39	35	10	5,4	0,8	22,4	83	0,42
20-40	4,5	4	4	11	1,1	0,4	0,4	4,5	6,0	23	25	21	2,0	0,2	10,5	84	0,32

Teor de argila (0-20 cm): 64% (solo muito argiloso); **Extratores:**

- P, K, Zn, Cu, Mn (Mehlich-1);
- Ca, Mg e Al (KCl 1 mol L^{-1});
- H+Al (Acetato de Cálcio pH 7,0);
- MO (dicromato de potássio);
- B (água quente);
- S (fosfato de cálcio).

*Nota: solo cultivado por 4 safras consecutivas sem adubação (8 cultivos: 4 de soja e 4 de milho "safrinha") - 2008/09 à 2011/12.



Т	Modo de aplicação do calcário e do	Doses aplicadas na safra 2012/2013				
	gesso	Calcário ^{/1}	Gesso ^{/2}	S-SO ₄ -2		
			- kg/ha ——-	· · · · · · · · · · · · · · · · · · ·		
1	Sem calagem	_	_	_		
2	Sem calagem + gesso superficial	_	3.200	480		
3	Calagem superficial	2.000	_	_		
4	Calagem superficial + gesso superficial	2.000	3.200	480		
5	Calagem incorporada (20 cm)	4.000	_	_		
6	Calagem incorporada (20 cm) + gesso superficial	4.000	3.200	480		

 $^{^{\}prime 1}$ Calcário Dolomítico. $^{\prime 2}$ Dose recomendada pela Embrapa: 50 x teor de argila (%). S-SO₄-2 – enxofre na forma de sulfato.

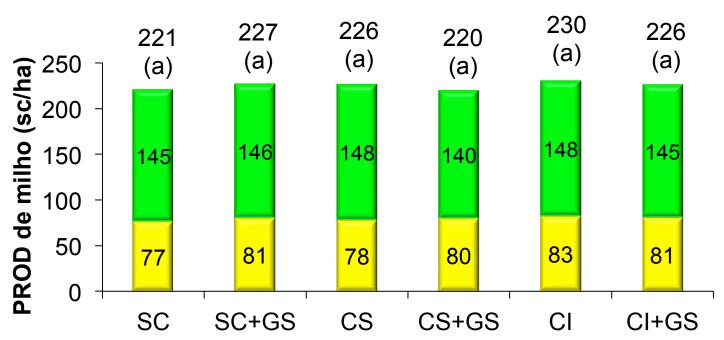
PNI INTERNATIONAL PLANT NUTRITION INSTITUTE

Produtividade acumulada de soja – 3 safras

Descrição dos tratamentos:

- SC: Sem Calagem
- SC + GS: Sem Calagem + Gesso Superficial
- CS: Calagem Superficial

- CS + GS: Calagem Superficial + Gesso Superficial
- CI: Calagem Incorporada (20 cm)
- CI + GS: Calagem Incorporada (20 cm) + Gesso

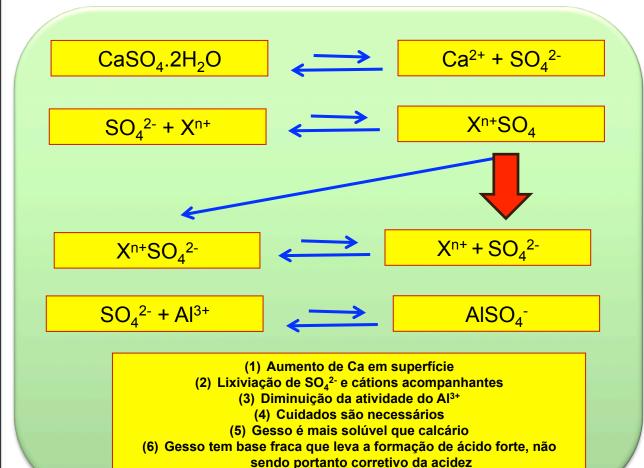

Superficial

IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

Produtividade acumulada de milho safrinha – 2 safras

Pr>F: 0,6690 ns CV: 4,87% Tukey (10%)

- Safra 2013/14 (Dow 2B587 PW)
- Safra 2012/13 (P30F35 Hx)


Descrição dos tratamentos:

- SC: Sem Calagem
- SC + GS: Sem Calagem + Gesso Superficial
- CS: Calagem Superficial

- CS + GS: Calagem Superficial + Gesso Superficial
- CI: Calagem Incorporada (20 cm)
- CI + GS: Calagem Incorporada (20 cm) + Gesso Superficial

PNI INTERNATIONAL PLANT NUTRITION INSTITUTE

Reações Envolvidas na Gessagem do Solo

Critério para uso de gesso:

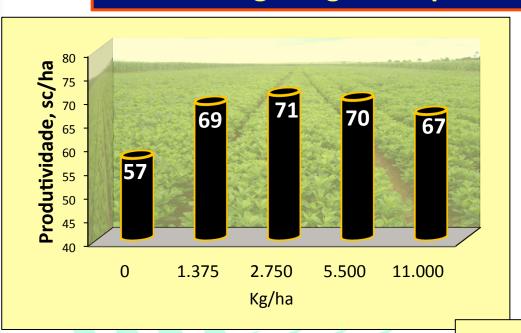
- ✓ Avaliar camada 20-40 cm ou 40-60 cm
- \checkmark Ca <0,5 cmol_c/dm³
- ✓ m% >30

PRÁTICAS CORRETIVAS: gessagem

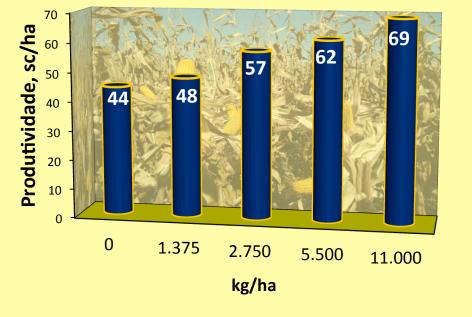
- √ Fonte de Ca (18%);
- ✓ Fonte de S (15%);
- ✓ Condicionar de subsuperfície: neutralizar Al trocável, fornecer Ca em profundidade;
- ✓ Condição p/ aplicação: m% > 30 e Ca < 0,5 cmol_c/dm³ na camada 20-40 cm;
- ✓ Dose de 50 kg para cada unidade de argila (Ex. 30% de argila x 50 kg = 1.500 kg/ha de gesso);
- √ Não demanda incorporação;

$$CaSO_4.2H_2O \longrightarrow Ca^{2+} + SO_4^{2-} + CaSO_4^{0}$$

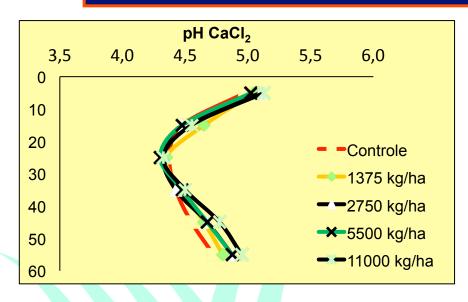
Efeito da gessagem na produtividade de soja e milho

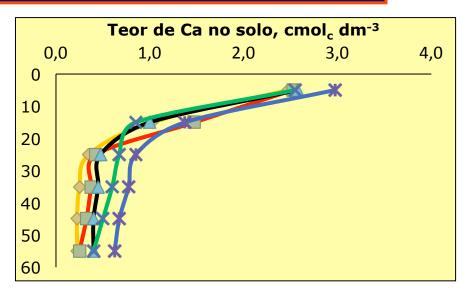

Latossolo Vermelho Amarelo (50% de argila) Condição original do solo

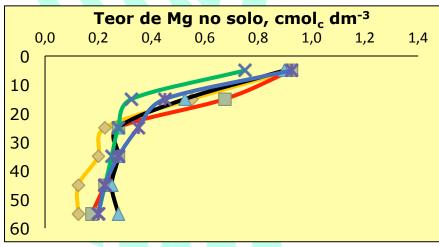
Prof.	рН	P	К	S	Ca	Mg	Al	СТС	МО	V
cm			mg (dm ⁻³		cmol	dm ⁻³		g/kg	%
0-10	5,4	15	33	15	3,2	1,7	0,0	8,2	32	60
10-20	4,7	7	29	17	1,4	0,8	0,2	6,3	22	36
20-30	4,3	1	27	26	0,4	0,2	0,3	5,3	17	12
30-40	4,3	1	20	36	0,3	0,2	0,3	4,3	11	12
40-50	4,5	1	17	27	0,3	0,2	0,3	3,4	9	16
50-60	4,7	1	17	10	0,2	0,2	0,2	3,1	8	15

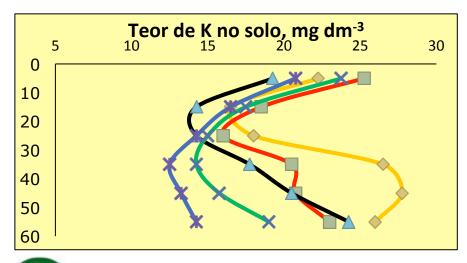

Fonte: Fundação MT/PMA/Nutrion

Efeito da gessagem na produtividade de soja e milho

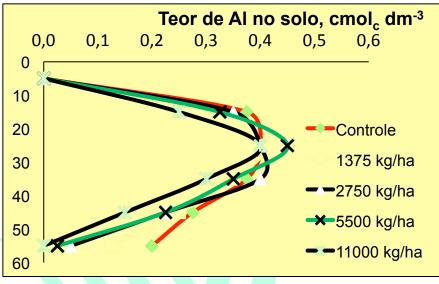

Fonte: Fundação MT/PMA/Nutrion (safras 2008/09 e 2009/10)

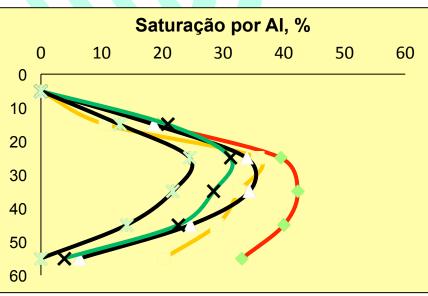


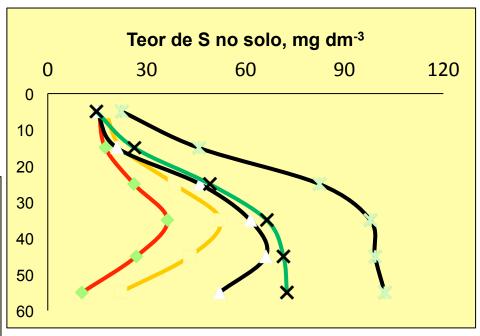


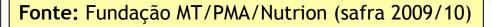


Efeito da gessagem nos atributos do solo






Fonte: Fundação MT/PMA/Nutrion (safra 2009/10)



Efeito da gessagem nos atributos do solo

"Real" evaluation of the soil fertility

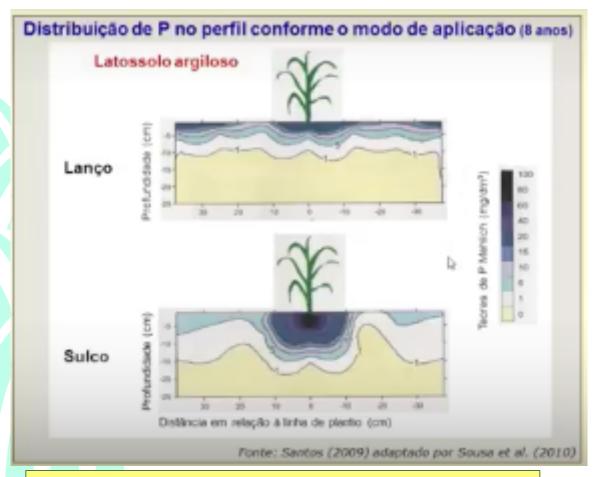
Depth	pH CaCl2	P	K	Ca	Mg	Al	CEC	BS	LR
cm		p	pm		cmol _c	%	t/ha		
0-20	5.0	19	29	1.8	0.7	0.0	5.8	44	1.7
20-40	4.4	2	14	0.6	0.2	0.5	4.0	21	

Source: Fundação MT/PMA - Safra 09/10

Dinâmica de P no solo

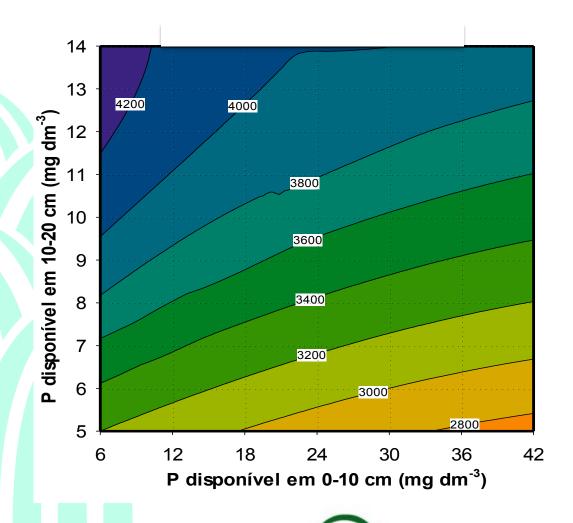
Dinâmica do P no sistema de produção

Distribuição de P (Mehlich 1, mg dm⁻³) no perfil em função do tempo de cultivo e do modo de aplicação do fertilizante em SPD (22% argila).

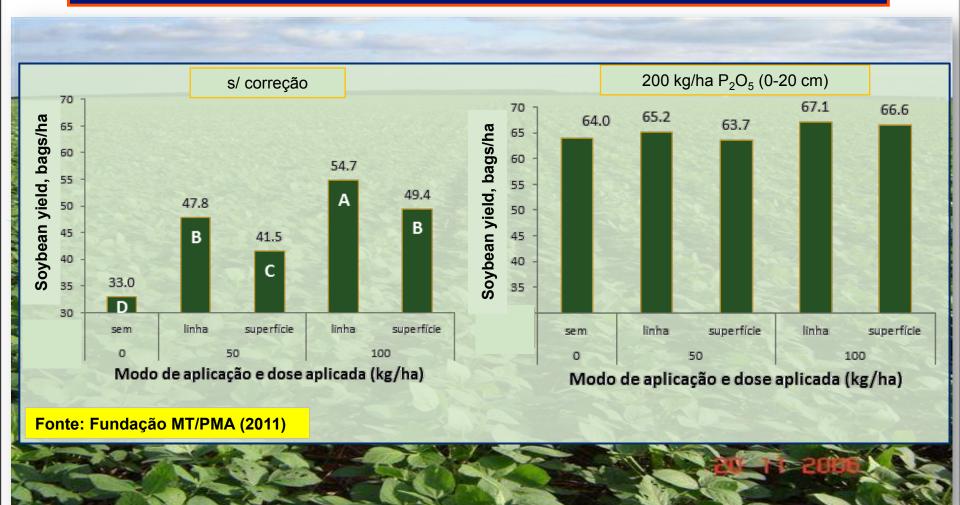

	empo de Modo de		Profundidade (cm)					
cultivo	aplicação —	0-5	5-10	10-15	15-25	25-35		
Safra	Broadcast	17	6	3	1	1		
1989/90	Banded	36	16	4	2	1		
Safra	Broadcast	18	6	3	1	1		
1999/00	Banded	28	13	11	11	3		
Safra 2006/07	Broadcast	48	18	8	4	2		
	Banded	45	42	18	12	6		

Fonte: Adaptado de Anghinoni (2009)

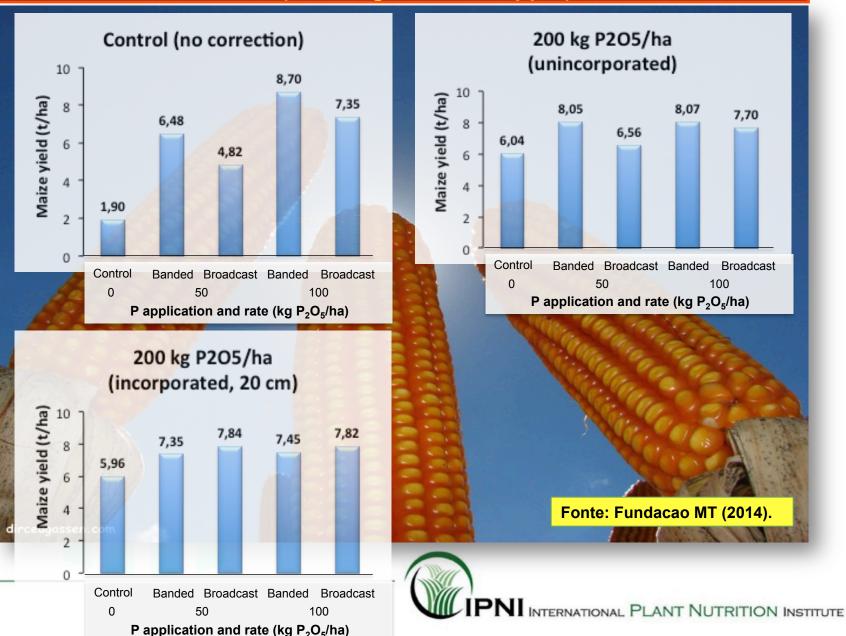
Fonte: Vilela (2013). http://brasil.ipni.net/article/BRS-3228


Distribuição de P no solo em função do local de aplicação de fertilizantes

Fonte: Vilela (2013). http://brasil.ipni.net/article/BRS-3228



Produtividade de soja (kg/ha) em função da disponibilidade de P no perfil do solo



Dose e modo de aplicação de P em diferentes níveis de correção do solo (teor original de P, 3 ppm)

Dose e modo de aplicação de P em diferentes níveis de correção do solo (teor original de P, 3 ppm)

Fatores para tomada de decisão sobre P lanço versus P sulco


- 1. Solo com teor muito baixo ou baixo de P (0 20 cm) = Sulco.
- 2. Solo com elevado potencial para perda de P por erosão superficial = Sulco.
 - 3. Solo com teor de P no mínimo médio de 0-20 cm e muito baixo/ baixo de 20 40 cm = Outros fatores devem ser considerados (ex.: clima).
- 4. Solo com teor razoável de P ao longo do perfil, sem elevado risco de erosão superficial e desejo de alto rendimento operacional na semeadura = Lanço.
 - 1. Intercalar localização é uma possibilidade.
 - 2. Antecipar P localizado é uma possibilidade.

Palestrante:

Dr. Anderson Cristian Bergamin (2015)

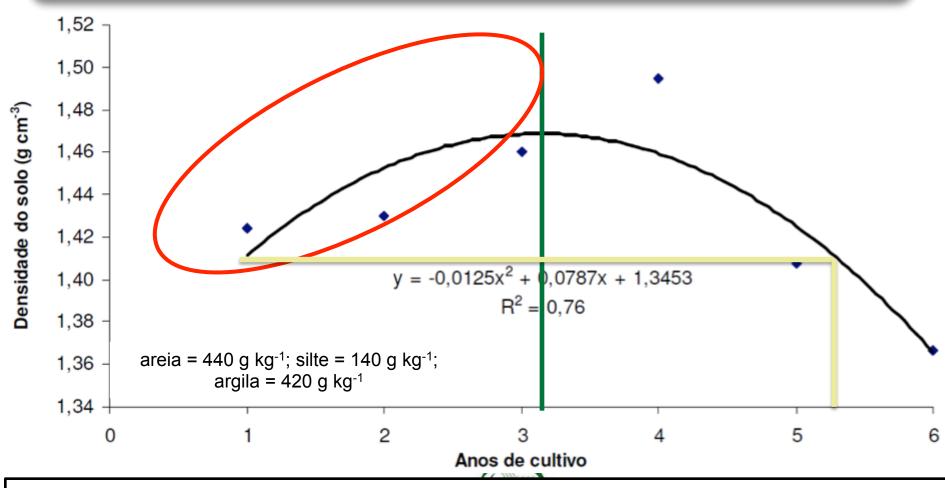


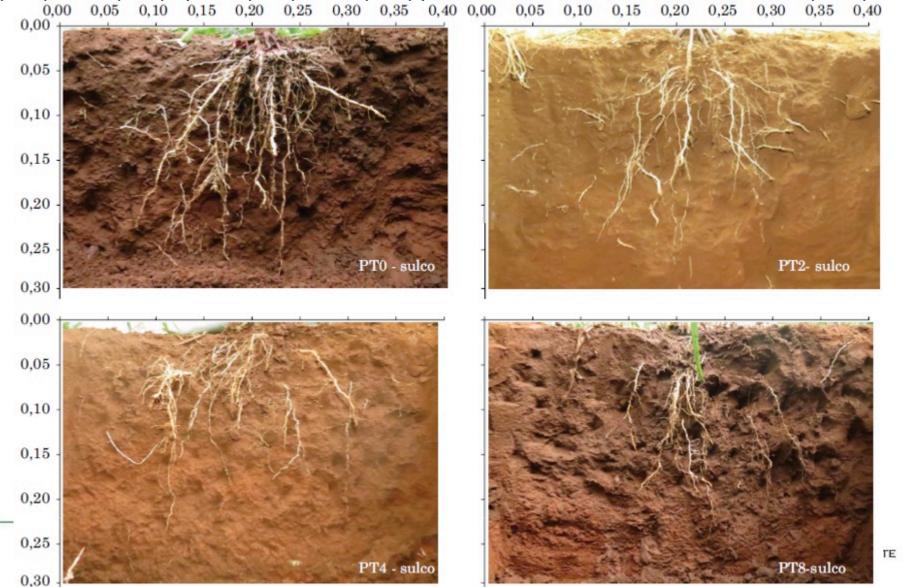
Fig. 1. Variação da densidade do solo na camada 0-20 cm em plantio direto contínuo ao longo de seis anos, Santo Antônio de Goiás, GO. Fonte: Silveira et al. (2008)

Dr. Anderson Cristian Bergamin (2015)

Compactação no solo

Atributos físicos nas diferentes camadas de um Latossolo Vermelho-Amarelo argiloso em razão do número de passadas de trator (6 Mg de massa) durante o cultivo do milho safrinha. Fonte: Valadão et al. (2015).

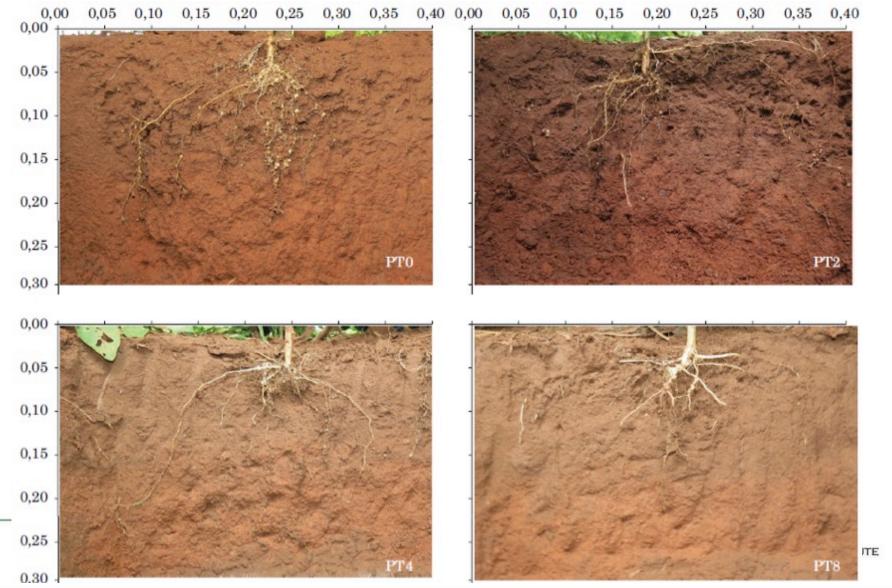
Camada	PT0	PT2	PT4	PT8	DMS	CV	
m						%	
			Densidade do so	lo (kg dm-3)			
0,00-0,05	1,09 C	1,21 B	1,26 AB	1,30 A	0,07	5,43	
0,05-0,10	1,12 C	1,22 B	1,29 A	1,32 A	0,07	5,16	
		Macroporosidade (m³ m-³)					
0,00-0,05	0,19 A	0,14 B	0,10 C	0,08 C	0,03	24,53	
0,05-0,10	0,20 A	0,13 B	0,12 B	0,08 C	0,03	20,70	


Na camada de 0,00-0,10 m do tratamento PT8, houve redução de 58 % dos valores de Mac em relação a PT0, o que correspondeu, em relação a PT0, a mudança de Ds média de 1,10 para 1,31 kg dm⁻³.

Palestrante: Dr. Anderson Cristian Bergamin (2015)

VIII Simpósio Regional IPNI Brasil

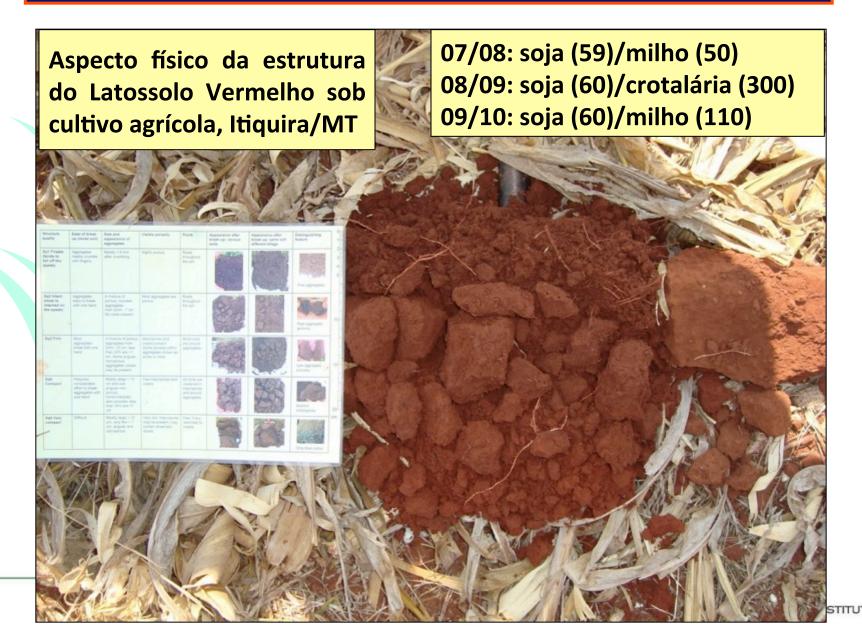
Distribuição das raízes do milho até 30 cm de profundidade do solo em decorrência de: zero (PT0), duas (PT2), quatro (PT4) e oito (PT8) passadas de trator. Fonte: Valadão et al. (2015)

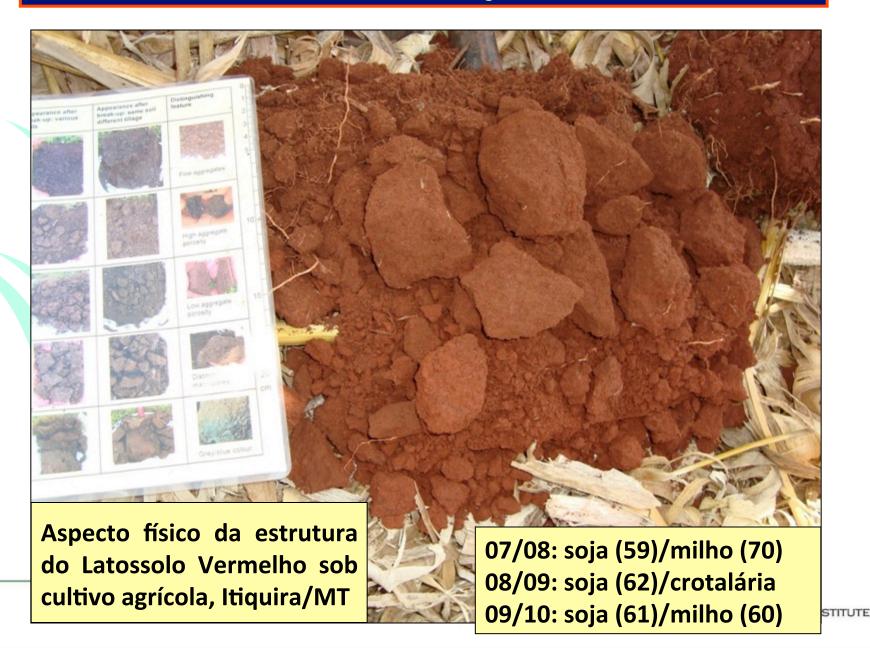


Palestrante: Dr. Anderson Cristian Bergamin (2015)

VIII Simpósio Regional IPNI Brasil

Distribuição das raízes de soja até 30 cm de profundidade do solo em decorrência de: zero (PT0), duas (PT2), quatro (PT4) e oito (PT8) passadas de trator. Fonte: Valadão et al. (2015)


Avaliação da qualidade física do solo pelo método visual (Ball et al., 2007):

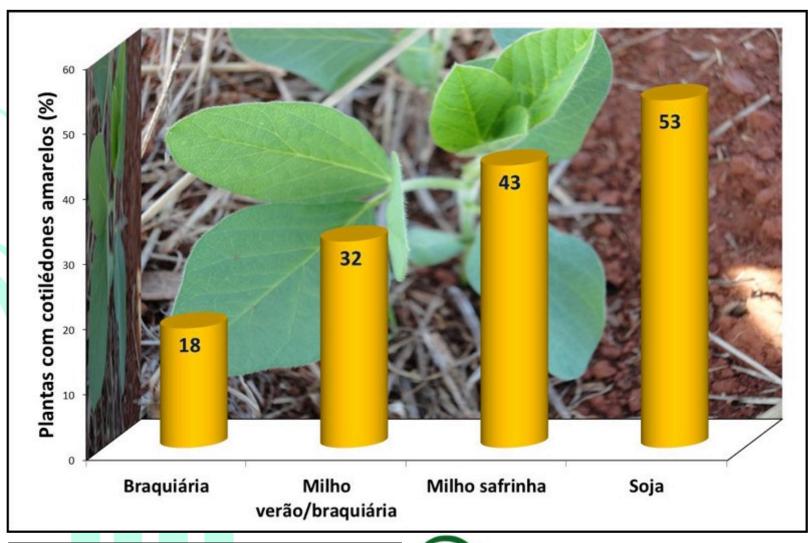

Dructure quality	Ease of break up (moist soil)	Size and appearance of apprepares	Visible perceity	Roots	Appearance after break-up: various solls	Appearance after tireak-so: same soil different titlage	Olatinguishing feature
Sqt Production of the squade)	Apprepares readily crumbre with fingers	Intently 4 6 mm after countries	Highly porsus	Roots throughout the soil			To appare
Sigt inter patented as a block on the space:	Appropries easy to break with one hand	A moture of porous, rounded aggregates from 2- 70 mm, No clocks present	Most appropries are portius	Poots throughout the soll			
Sg2 Firm	No official	A minime of porous aggregates from 3mm -10 cm, tess frem 30% are c1. One Some angular, non-porous 400 register (stock) may be present	Macropores and cracks present, Some percelly within appreciate shown as pones or roots.	Most roots are around aggregates			
Squi Compact	Oyle difficult	Mostly large = 10 on and sub- angular non- prinsis; horizontaliplary sitto prosettie; less than 30% are <7 on	Few macropures and cracks	All note are clustered in macropores and around appregates			Date of the second
Ref very reference		Mostly large > 10 6th, vitry law < 7 5th, singular and fide-distribus	Very low, inscrippings may be present, may contain ansemble; plines	Fax, Fang, restricted to create.		1	

Aspecto físico da estrutura original do Latossolo Vermelho sob vegetação de Cerrado, Itiquira/MT

Efeito da cobertura do solo no estabelecimento das plantas

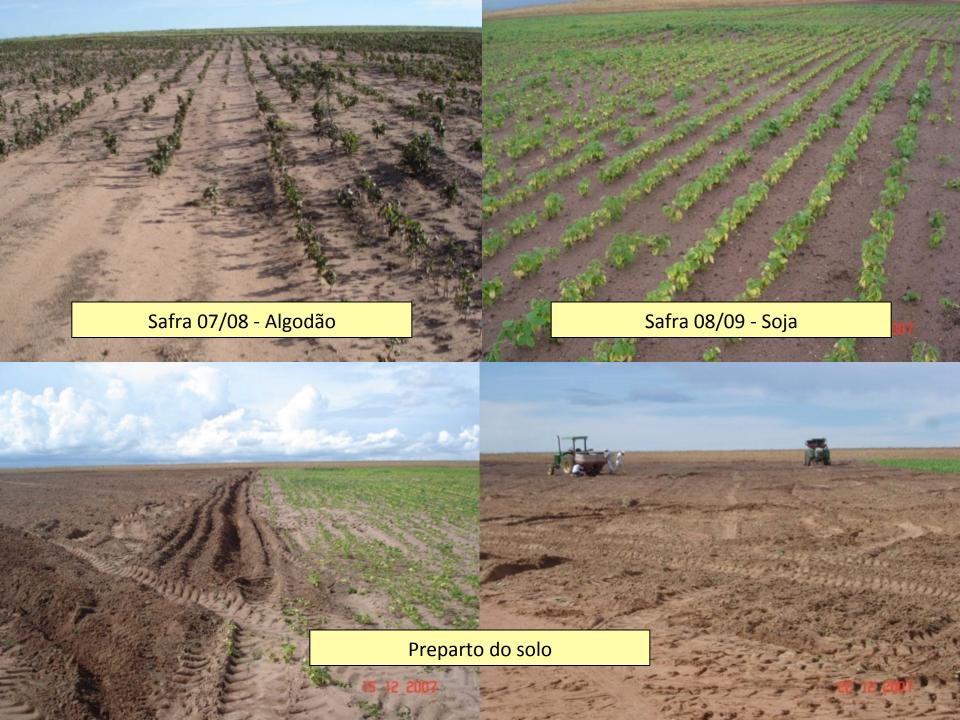
Soja pós pousio (PC)

Soja pós milho safrinha (SPD)



Soja pós pousio (SPD)

Efeito da cobertura do solo no estabelecimento das plantas


Fonte: Fundação MT/PMA (safra 2011/12)

Manejo biológico do solo: estudo de caso

Desenvolvimento da soja em solo arenoso (6% argila) após rotação com o consórcio de B. ruziziensis e C. spectábilis Jaciara - MT

Manejo biológico do solo: estudo de caso

Mudança provocada:
Manejo priorizando:
-Atividade biológica do solo
-Manutenção da água no solo

Simpósio IPNI Brasil

08, 09 e 10/SETEMBRO/2015 Campinas - Itupeva, SP

