


IX Simpósio Regional • IPNI Brasil

BOAS PRÁTICAS PARA USO EFICIENTE DE FERTILIZANTES

Paragominas - PA • 30 e 31 DE AGOSTO/2016

BPUFS NA CULTURA DO MILHO NO PÓLO DE PARAGOMINAS — PARÁ

BAZÍLIO WESZ CARLOTO ENG. AGRONÔMO DIRETOR - PRESIDENTE COOPERNORTE

IX Simpósio Regional • IPNI Brasil

BOAS PRÁTICAS PARA USO EFICIENTE DE FERTILIZANTES

Paragominas - PA • 30 e 31 DE AGOSTO/2016

CALENDÁRIO AGRÍCOLA DE MILHO — MICROREGIÃO DE PARAGOMINAS — PA

EMBRAPA

PARAGOMINAS MILHO - 2015/16

TEXTURA	PERÍODOS DE SEMEADURA POR CICLO DE CULTURA										
DO SOLO	Grupo I (curto)	Grupo II (médio)	Grupo III (tardio)								
Arenosa	11/dez a 31/mar	11/dez a 10/mar	11/dez a 28/fev								
Média	1/dez a 10/abr	21/nov a 31/mar	21/nov a 10/mar								
Argilosa	21/nov a 20/abr	21/nov a 31/mar	21/nov a 20/mar								

Ciclo da cultura

Grupo I (curto) Inferior a 110 dias Grupo II (médio) De 110 a 130 dias Grupo III (tardio) Superior a 130 dias

Textura do Solo

Tipo II Arenosa Tipo III Média Tipo III Argilosa

RONDON DO PARÁ MILHO - 2015/16

TEXTURA	PERÍODOS DE SEMEADURA POR CICLO DE CULTURA										
DO SOLO	Grupo I (curto)	Grupo II (médio)	Grupo III (tardio)								
Arenosa	1/dez a 10/mar	1/dez a 28/fev	1/dez a 10/fev								
Média	1/nov a 20/mar	1/nov a 10/mar	1/nov a 20/fev								
Argilosa	1/nov a 31/mar	1/nov a 20/mar	1/nov a 28/fev								

Cicle da cultura

Grupo I (curto) Inferior a 110 días Grupo II (médio) Do 110 a 130 días Grupo III (tardio) Superior a 130 días

Textura do Solo

Tipo I Arenosa Tipo II Média Tipo III Argilosa

ULIANÓPOLIS MILHO - 2015/16

TEXTURA	PERÍODOS DE SEMEADURA POR CICLO DE CULTURA										
DO SOLO	Grupo I (curto)	Grupo II (médio)	Grupo III (tardio)								
Arenosa	21/dez a 10/mar	21/dez a 28/fev	21/dez a 10/fev								
Média	21/nov a 20/mar	21/nov a 10/mar	21/nov a 28/fev								
Argilosa	21/nov a 31/mar	21/nov a 20/mar	21/nov a 28/fev								

Ciclo da cultura

Grupo II (curto) Inferior a 110 dias Grupo II (médio) De 110 a 130 dias Grupo III (tardio) Superior a 130 dias

Textura do Solo

Tipo II Arenosa Tipo III Média Tipo III Argilosa

FORMULÁRIO DE PESQUISA

DENSIDADE POPULA	ACIONAL (PL/HÁ):				
HÍBRIDO PL					
PRODUTIVIDADE O	BTIDA (SCS/HÁ):				
PLANTIO D	IRETO:	()	SIM	()	NÃO
SE NÃO OPTA PELO QUAL O MO					
	ADUBAÇÃO				
FERTILIZANTE	KG/HA	N	P ₂ 0 ₅	K ₂ 0	S
KCL (00.00.60)			-	•	-
MAP (11.52.00)		-	-		-
10-30-10 + 6% S	-	-	-	-	-
22-00-22 + 7% S	- I	-	-	-	-
20-00-20 + 10% S	-	-	-	-	-
30-00-20 + 0,46% S	-	-	-	-	-
NITRATO DE AMÔNIO					
(27.00.00)					
SAM (20.00.00 + 24% S)	-		-		-
TOTAL PO	ONTOS	-	-	-	-

HÍBRIDOS DE MILHO MAIS PLANTADOS NA REGIÃO

►P30F35 VYHR;

>DOW 2B810 PW;

►P3646 YH;

➤ DOW 2B512 PW;

>AG 7088 PRO;

>SYN TRUCK VIP;

➤ DKB 177 PRO;

>SYN STATUS VIP.

➤ DKB 310 PRO;

TRATAMENTO DE SEMENTES

OS TRATAMENTOS DE SEMENTES MAIS UTILIZADOS NA REGIÃO SÃO A BASE DE:

➤IMIDACLOPRIDO + TIODICARBE;

>CLOTIANIDINA;

>THIAMETHOXAM.

DENSIDADE DE PLANTIO

TABELA 1 - MÉDIA DE POPULAÇÃO DE PLANTAS FINAIS CULTURA DO MILHO SAFRA 15-16

PRODUTOR	POPULAÇÃO (PL/HÁ)
PRODUTOR A	60.000
PRODUTOR B	60.000
PRODUTOR C	60.000
PRODUTOR D	65.000
PRODUTOR E	60.000
PRODUTOR F	61.000
MÉDIA	61.000

CONTROLE DE INVASORAS

OS PRINCIPAIS PRODUTOS PARA O CONTROLE DE INVASORAS SÃO A BASE DE:

- > ATRAZINA;
- > TEMBOTRIONA;
- > MESOTRIONE;
- > NICOSULFURON.

CONTROLE DE PRAGAS

PARA O CONTROLE DE PRAGAS, OS PRINCIPAIS PRODUTOS SÃO A BASE DE:

- > METOMIL;
- > TIODECARB;
- > TRIFLUMURON;
- > TEFLUBENZURON;
- > LUFENURON.

CONTROLE DE DOENÇAS FUNGICAS

OS PRINCIPAIS PRODUTOS UTILIZADOS NO MANEJO DE DOENÇAS FUNGICAS SÃO A BASE DE:

- > TEBUCONAZOLE + TRIFLOXISTROBINA;
- > AZOXISTROBINA + CIPROCONAZOL;
- CIPROCONAZOL + TRIFLOXISTROBINA;
- > EPOXICONAZOL + PIRACLOSTROBINA.

IX Simpósio Regional • IPNI Brasil

BOAS PRÁTICAS PARA USO EFICIENTE DE FERTILIZANTES

Paragominas - PA • 30 e 31 DE AGOSTO/2016

ANÁLISES QUÍMICA DO SOLO

ANALISE DE SOLO: ÁREA SEM CORREÇÃO

Determinação	Unidade	12469	12470	12471	12472	12473	12474	12475	12476	12477	12478
pH Água	1:2,5										
pH CaCl ₂ O	1:2,5	4,8	4,8	5,2	5,2	4,8	4,7	5,3	5,2	5,4	4,7
P meh-1		4,1	6,5	12,1	6,0	8,9	14,8	7,5	15,3	9,5	3,9
P rem.	l v										
P resina	3	6,1	6,1	8,0	6,1	7,1	8,0	6,1	7,1	6,1	6,1
Na	mg dm ⁻³										
К		69	74	82	70	76	56	83	82	96	75
S		8	8	7	9	8	7	6	8	7	7
Ca		2,4	2,3	2,9	2,9	2,0	1,7	3,1	2,8	4,2	2,5
Mg	cmolc dm ⁻³	0,5	0,5	0,5	0,7	0,6	0,5	0,7	0,6	0,6	0,5
Al	cmoic am	0,10	0,10	0,00	0,00	0,10	0,20	0,00	0,00	0,00	0,10
H+AI	7	3,40	3,40	2,80	2,80	3,40	3,80	2,50	2,80	2,50	3,40
M.O.	1	2,5	2,7	2,7	2,7	2,6	2,5	2,7	2,7	2,9	2,3
C.O	dag kg ⁻¹	1,5	1,6	1,6	1,6	1,5	1,5	1,6	1,6	1,7	1,3
В		0,22					0,23				
Cu		0,3				- 1975 To 1975	0,3				
Fe	mg dm ⁻³	18					19				
Mn		4,9					3,2				
Zn		0,7					1,0		Lanca Contract		
SB	3	3,08	2,99	3,61	3,78	2,79	2,34	4,01	3,61	5,05	3,19
T	cmolc dm ⁻³	6,48	6,39	6,41	6,58	6,19	6,14	6,51	6,41	7,55	6,59
V		48	47	56	57	45	38	62	56	67	48
m	%	3	3	0	0	4	8	0	0	0	3
Ca/Mg		4,8	4,6	5,8	4,1	3,3	3,4	4,4	4,7	7,0	5,0
Ca/K		13,3	12,1	13,8	16,1	10,5	12,1	14,8	13,3	16,8	13,2
Mg/k		2,8	2,6	2,4	3,9	3,2	3,6	3,3	2,9	2,4	2,6
Ca+Mg/K		16,1	14,7	16,2	20,0	13,7	15,7	18,1	16,2	19,2	15,8
Ca/T		37	36	45	44	32	28	48	44	56	38
Mg/T		8	8	8	11	10	8	11	9	8	8
к/т		3	3	3	3	3	2	3	3	3	3
	and the second			Anális	e Granulon	nétrica					
Argila		650					600				
Silte	g kg ⁻¹	62			C		60				
Areia Total		288					340				
Classificaçã	io	M Argilosa					Argilosa				

ANALISE DE SOLO COM CORREÇÃO

Cod.	December America	p	Н	Pmeh ⁻¹	P rem.	P res.	Na ⁺	K ⁺	S	K ⁺	Ca ²⁺	Mg ²⁺	AI ³⁺	H+AI	M.O.
Lab.	Descrição Amostra	H ₂ 0	CaCl ₂		mg dm ⁻³				cmol _c dm ⁻³				dag kg ⁻¹		
23636	ABERTURA - 01	6,1	5,4	4,0	ns	ns	ns	141,0	11	0,36	3,77	1,11	0,00	2,30	3,23
23637	ABERTURA - 02	5,7	5,0	5,1	ns	ns	ns	107,0	17	0,27	3,00	0,90	0,00	2,30	2,75
23638	ABERTURA - 03	6,0	5,4	3,7	ns	ns	ns	108,0	10	0,28	3,62	1,19	0,00	2,50	3,06
23639	ABERTURA - 04	6,1	5,3	4,7	ns	ns	ns	113,0	9	0,29	3,33	1,06	0,00	2,40	2,97
23640	ABERTURA - 05	6,1	5,4	8,1	ns	ns	ns	125,0	12	0,32	4,01	0,96	0,00	2,50	3,46
23641	ABERTURA - 06	6,0	5,2	3,5	ns	ns	ns	93,00	10	0,24	3,50	0,97	0,00	2,70	3,15
23642	ABERTURA - 07	6,4	5,6	15,4	ns	ns	ns	116,0	15	0,30	4,02	1,09	0,00	2,50	2,81
23643	ABERTURA - 08	5,8	5,1	5,0	ns	ns	ns	73,00	12	0,19	3,33	1,08	0,00	2,80	3,55

Cod.	Descrie a America	В	Cu	Fe	Mn	Zn	SB	СТС	٧	m	Ca/Mg	Ca/K	Mg/K	Ca/CTC	Mg/CT	K/CTC
Lab.	LIESCRICAD AMOSTRA		mg dm ⁻³				cmol _c dm ⁻³ %			Relações			%			
23636	ABERTURA - 01	ns	ns	ns	ns	ns	5,2	7,5	69,50	0,00	3,4	10,5	3,1	50	15	5
23637	ABERTURA - 02	ns	ns	ns	ns	ns	4,2	6,5	64,50	0,00	3,3	11,1	3,3	46	14	4
23638	ABERTURA - 03	ns	ns	ns	ns	ns	5,1	7,6	67,10	0,00	3,0	12,9	4,2	48	16	4
23639	ABERTURA - 04	ns	ns	ns	ns	ns	4,7	7,1	66,10	0,00	3,1	11,5	3,7	47	15	4
23640	ABERTURA - 05	ns	ns	ns	ns	ns	5,3	7,8	67,90	0,00	4,2	12,5	3,0	52	12	4
23641	ABERTURA - 06	ns	ns	ns	ns	ns	4,7	7,4	63,60	0,00	3,6	14,6	4,0	47	13	3
23642	ABERTURA - 07	ns	ns	ns	ns	ns	5,4	7,9	68,40	0,00	3,7	13,4	3,6	51	14	4
23643	ABERTURA - 08	ns	ns	ns	ns	ns	4,6	7,4	62,20	0,00	3,1	17,5	5,7	45	15	3

CORREÇÃO DO SOLO (CALAGEM)

- ➤ DIMINUIÇÃO DA TOXIDEZ DE H+, AL+3;
- DISPONIBILIDADE DE NUTRIENTES, NOTADAMENTE N, S, P e B;
- ➤ AUMENTO NA DISPONIBILIDADE DE CÁLCIO E MAGNÉSIO;

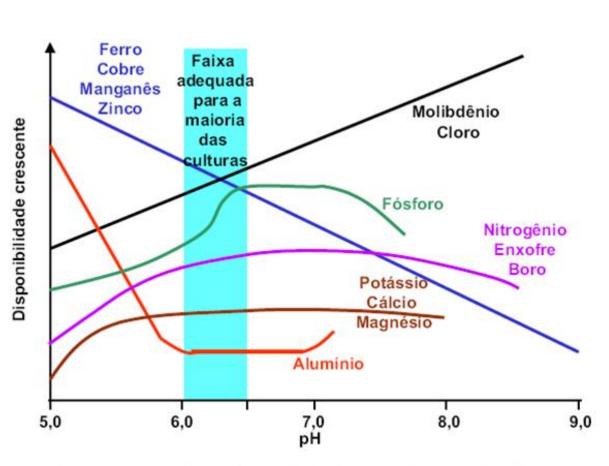
PRODUTIVIDADE.

CORREÇÃO DO SOLO (CALAGEM)

calcário calcítico	45 a 55% CaO	1 a 5 % de MgO
calcário magnesiano	33 a 44% de CaO	6 a 12 % de MgO
calcário dolomítico	25 a 32 % de CaO	13 a 21 % de MgO

APLICAÇÃO À LANÇO NA FAIXA DE 1,0 A 2,0 T/HÁ

CORREÇÃO DO SOLO (GESSAGEM)


➤ GARANTIA MÍNIMA: 16% Ca + 13% S;

VANTAGENS:

- CORRIGE DEFICIÊNCIAS DE Ca EM SUBSUPERFÍCIE;
- CORRIGE SATURAÇÃO POR ALUMINIO.
- ➤ ADICIONA S NA FÓRMULA, TENDO EM VISTA QUE OS SOLOS DO CERRADO TEM BAIXA CONCENTRAÇÃO DESTE ELEMENTO;
- AUMENTOS CRESCENTES NAS CULTURAS DE ADUBOS ISENTOS DE ENXOFRE COMO: **URÉIA, MAP E DAP**.

APLICAÇÃO À LANÇO NA FAIXA DE 0,5 A 1,0 T/HÁ

DISPONIBILIDADE NUTRIENTES A DIFERENTES pH

Amplitude de pH vs disponibilidade de nutrientes e alumínio. Fonte: Malavolta, 1979.

IX Simpósio Regional • IPNI Brasil

BOAS PRÁTICAS PARA USO EFICIENTE DE FERTILIZANTES

Paragominas - PA • 30 e 31 DE AGOSTO/2016

ADUBAÇÃO DE PLANTIO E COBERTURA

ADUBAÇÃO PRÁTICADA NA REGIÃO

TABELA 2 - MÉDIA DE PONTOS DE NUTRIENTES NA CULTURA DO MILHO SAFRA 15-16

PRODUTOR		PONTOS									
PRODUTOR	N	$P_{2}O_{5}$	K_20	S							
PRODUTOR A	134	114	110	35							
PRODUTOR B	125	80	80	-							
PRODUTOR C	160	130	156	93							
PRODUTOR D	128	120	128	52							
PRODUTOR E	134	114	100	50							
PRODUTOR F	144	120	120	44							
MÉDIA	137	113	116	46							

NITROGÊNIO (N):

APLICADO 1/3 DO TOTAL DE **N** NO PLANTIO, E O RESTANTE EM 2 VEZES EM COBERTURA À LANÇO.

PRINCIPAIS FONTES:

>URÉIA: 45% N;

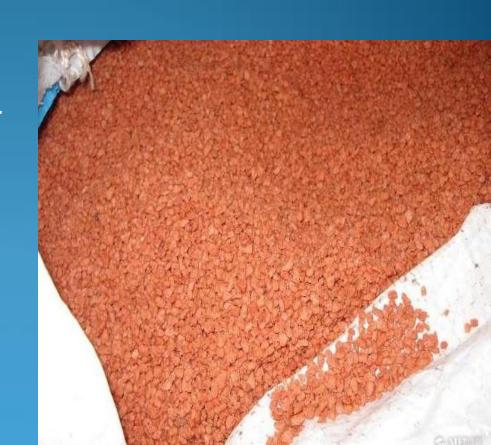
SULFATO DE AMÔNIO: 20% N E 24% DE S.

FÓSFORO (P):

SOLOS ARGILOSOS (ACIMA DE 60% ARGILA), COM ALTA CAPACIDADE DE FIXAÇÃO DE FÓSFORO;

APLICADO NA LINHA DE PLANTIO. SOLOS CORRIGIDOS EM FÓSFORO E BONS NÍVEIS DE **M.O** A TENDÊNCIA É APLICAR PARTE DO FÓSFORO A LANÇO.

PRINCIPAIS FONTES DE FÓSFORO:


- ►MAP: 45% **N**; 50-52% DE **P**₂**O**₅;
- ➤ SUPERFOSFATO SIMPLES: 18-20% DE **P₂O_{5;} 18%** DE **Ca**; 10-12% **S**;
- SUPERFOSFATO TRIPLO: 42% DE P₂O_{5:} 12- 14% DE Ca.

POTÁSSIO (K):

APLICADO NA LINHA DE PLANTIO E PARTE A LANÇO.

PRINCIPAIS FONTES DE POTÁSSIO:

CLORETO DE POTÁSSIO (KCL): 60% K₂0.

MICRONUTRIENTES:

SOLOS SEM RESTRIÇÕES A MICRONUTRIENTES.

ZINCO (Zn):

MAIS UTILIZADO VIA SEMENTE OU VIA FOLIAR.

MANEJO PARA ALTAS PRODUTIVIDADES NA CULTURA DO MILHO:

ADUBAÇÃO PRODUTIVIDADE 411 SC/HÁ:

- >7 TONELADAS ESTERCO DE AVIÁRIO/HA;
- \triangleright 650 KG/HA 12-30-20 (78 N; 195 P_2O_{5} : 130 K_2O)
- \geq 200 KG/HA CLORETO (120 K_2 0)
- >750KG/HA URÉIA SUPER N(2 APLICAÇÕES A LANÇO)
- 337,5 **N**;
- ► 2 APLICAÇÕES DE FUNGICIDA;
- ►1 DE INSETICIDA NO HERBICIDA;
- ►1 DE INSETICIDA NO FUNGICIDA;
- >LINHA COMPLETA DE NUTRIÇÃO STOLLER.

PLANTIO DIRETO

- >POUCO ADOTADO NA REGIÃO;
- >ÁREAS NOVAS (CORREÇÃO E SISTEMATIZAÇÃO DAS ÁREAS);
- > PRECONCEITO COM INCIDÊNCIA DE SOJA LOUCA II.

Desvantagens do Plantio Direto

- Maior custo de implantação do Sistema (descompactação do solo, aquisição de calcário e de adubos, compra de implementos...);
- Normalmente há necessidade de maior uso de herbicidas, principalmente no início;
- Poderá haver maior incidência de pragas (lesmas e lagarta rosca) e doenças do solo.
- A produtividade inicial (primeiros 3 anos) é um pouco reduzida quando comparada ao Sistema Convencional, salvo exceções na cultura da soja.

VANTAGENS DO PLANTIO DIRETO

- EVITA A EROSÃO DO SOLO;
- ►EVITA A COMPACTAÇÃO DO SOLO;
- ► MAIOR DISPONIBILIDADE DE ÁGUA;
- >MELHOR APROVEITAMENTO DA ÁGUA;
- ► MELHORA A CAPACIDADE TAMPÃO DO SOLO;

VANTAGENS DO PLANTIO DIRETO

- ► AUMENTA A MATÉRIA ORGÂNICA NO SOLO;
- AUMENTA A QUANTIDADE DE MINHOCAS E MICRORGANISMOS;
- >AUMENTA A DISPONIBILIDADE DE N, P, K;
- ➤ REDUZ A TOXICIDADE DO Al, Mn, Cd, E PESTICIDAS;

VANTAGENS DO PLANTIO DIRETO

- >PERMITE SEMEADURAS MAIS OPORTUNAS;
- ➤ PROPORCIONA MAIS TEMPO PARA OUTRAS ATIVIDADES;
- ► MENORES CUSTOS DE PRODUÇÃO;
- CONTRIBUI PARA O SEQUESTRO DE CARBONO;
- DIMINUI ASSOREAMENTO NAS REPRESAS HIDRELÉTRICAS.

PERFIL DO SOLO

FONTE: MERCER, R. M. (2010) Local: Bahia

"A FERTILIDADE DO SOLO É UM DOS PRINCIPAIS FATORES RESPONSÁVEIS PELA BAIXA PRODUTIVIDADE DAS CULTURAS. ESSE FATO NÃO SE DEVE APENAS AOS BAIXOS NÍVEIS DE NUTRIENTES NOS SOLOS, MAS TAMBÉM AO USO INADEQUADO DAS CORREÇÕES E ADUBAÇÕES DE MANUNTENÇÃO".

Sejam eficientes!!!

