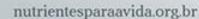
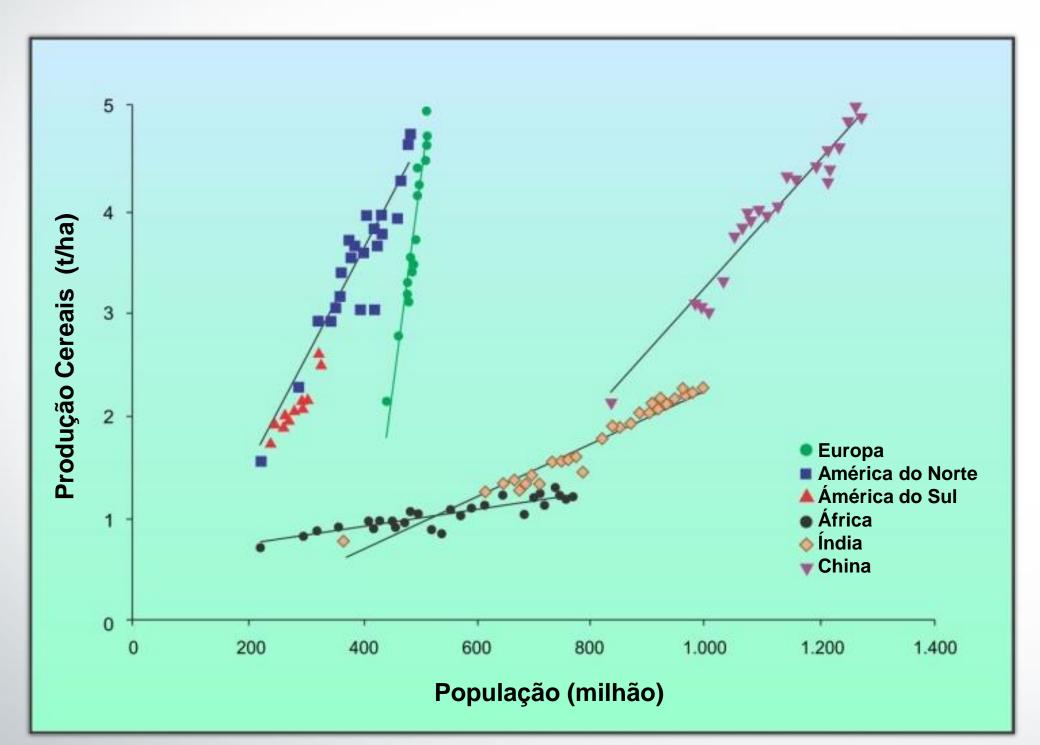



Valter Casarin
Diretor Adjunto - IPNI Brasil

Nutrindo as plantas para nutrir as pessoas

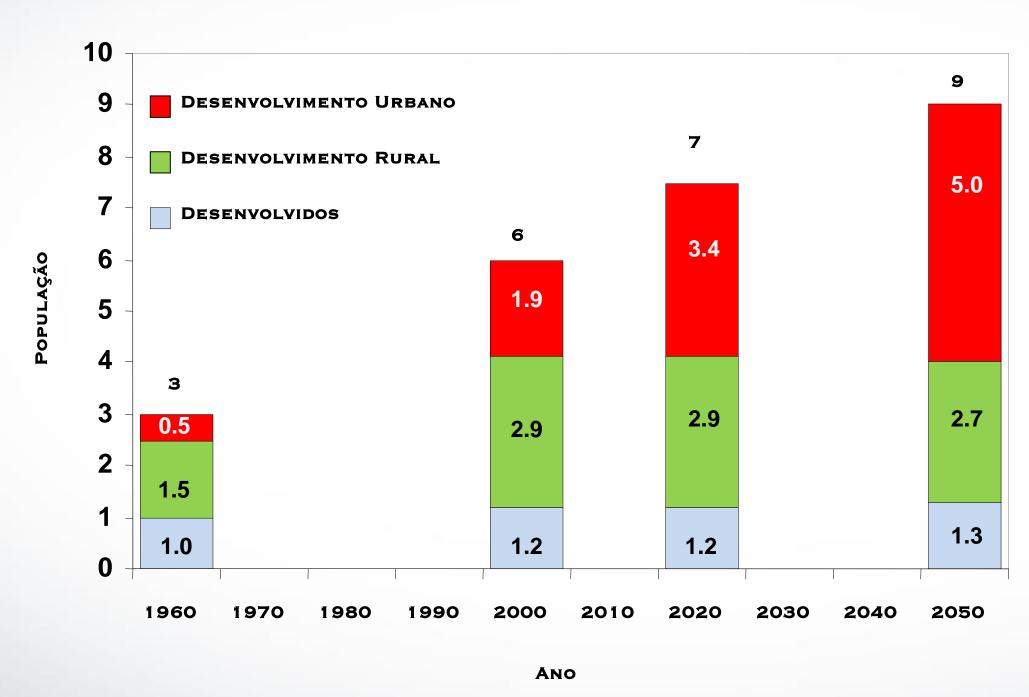


População mundial e projeções de demanda de alimentos



- ✓ A população total deverá aumentar em cerca de 35% até 2050, dos atuais 6,9 bilhões para 9,3 bilhões (United States Census Bureau).
- ✓ A produção de alimentos terá de aumentar em aproximadamente 70% até 2050 (FAO).
- ✓ Outros agentes atuantes no processo serão:
 - diminuição na força de trabalho rural;
 - mercado provavelmente crescente de biocombustíveis (etanol de celulose poderá modificar o cenário atual);
 - mudança na dieta em países em desenvolvimento (base grãos para base carne).

Relação entre população e produtividade média de cereais em seis regiões-chave do mundo



FONTE: EVANS, 2003

Crescimento Populacional

VEJA: "MEGACIDADES, O INCHAÇO DAS ÁREAS URBANAS PREOCUPA MAIS QUE O AQUECIMENTO

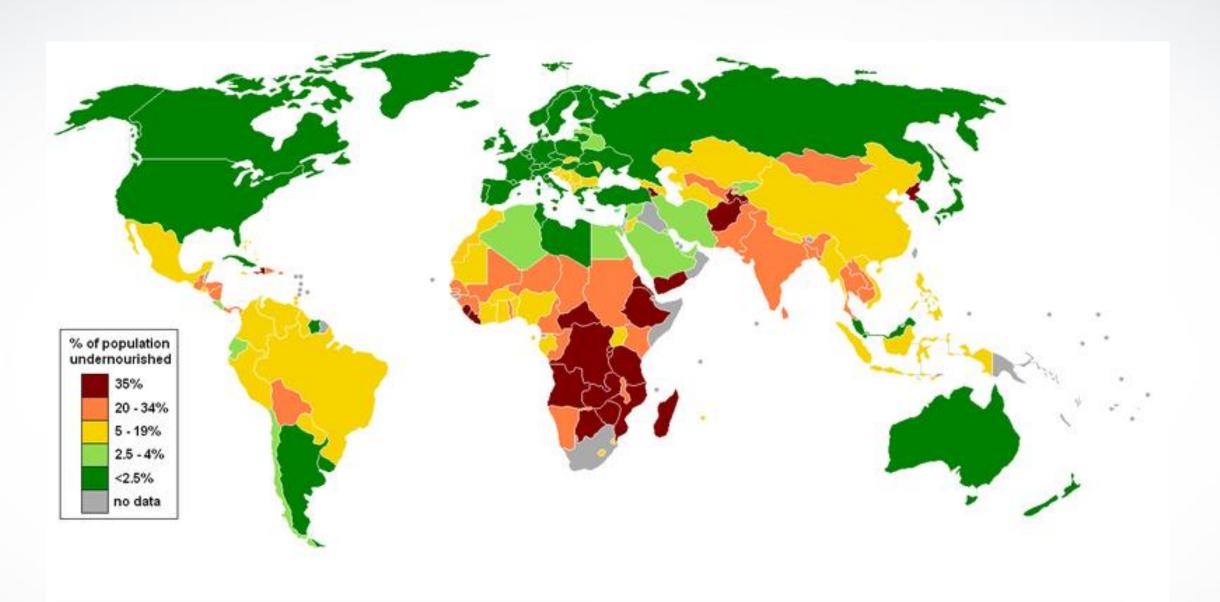
Projeções de crescimento da produção agrícola para 2050 (%)

REGIÃO/EXPANSÃO	EXPANSÃO DE ÁREA	INTENSIDADE DE CULTIVO	PRODUTIVIDADE
Todos os países em desenvolvimento	21	8	71
África Subsaariana	25	6	69
Oriente Próximo/ Norte da África	-7	17	90
América Latina/Caribe	30	18	52
Sul da Ásia	5	8	87
Leste da Ásia	2	12	86
Mundo	9	14	77

Baseado em FAO (2006): Projeções de demanda para 34 culturas em 108 países.

Fonte: Bruinsma (2009).

Mundo: aumento da demanda por alimentos, fibras e energia


	2007	2050	Δ%
Cereais (milhões t)	2.100	3.000	43
Carnes (milhões t)	228	463	103
População (bilhões de pessoas)	6,8	9,2	35
População urbana (bilhões de pessoas)	3,32	6,44	94

Fonte: ABAG (2010), FAO.

Insegurança alimentar: um grande desafio

- 33% da população da África Subsaariana (200 milhões de pessoas) estão subnutridas.
- Desnutrição associada ao baixo uso de fertilizantes (< 10 kg/ha).

Impressionante

✓A FIM DE ALIMENTAR 9 BILHÕES DE PESSOAS O MUNDO NECESSITARÁ PRODUZIR NOS PRÓXIMOS 40 ANOS QUANTIDADE DE ALIMENTO SIMILAR AO QUE SE PRODUZIU NOS ÚLTIMOS 8.000 ANOS (CLAY, J.; ARTIGO WEBSITE)

HTTP://THEBQB.COM/EXPERTS-CLAIM-THAT-EARTH-COULD-BE-%E2%80%9Cunrecognizable%E2%80%9D-by-2050/225852/)

Contexto Brasil

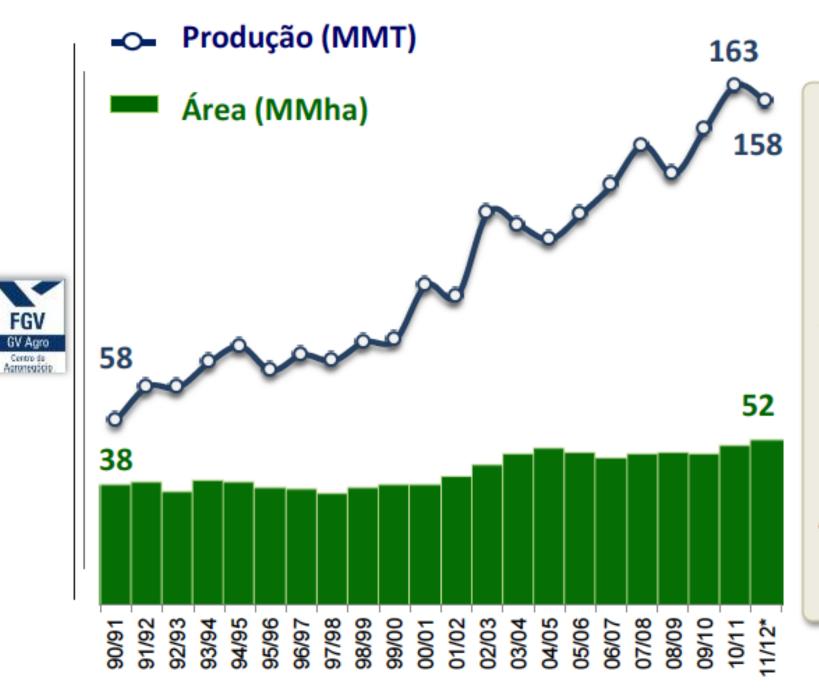
Distribuição territorial (Estimativa - milhões de ha)

Floresta Amazônica	345
Pastagens	220
Áreas protegidas	55
Culturas anuais	47
Culturas permanentes	15
Cidades, lagos e estradas	20
Florestas cultivadas	5
Subtotal	707
Outros usos	38
Áreas não exploradas ainda disponíveis para a agricultura	106
TOTAL	851

Fonte: IBGE, CONAB; adaptado de MAPA (2004).

Brasil - Uso da terra

Divisão territorial (m	Divisão territorial (milhões de ha)		% Área Agricultável
Brazil	851	100%	-
Área agricultável	329.9	38.8%	100.0%
Área plantada (anual e perene)	72.2	8.5%	21.9%
Grãos	49.9	5.9%	15.1%
Soja	24.2	2.8%	7.3%
Milho	13.8	1.6%	4.2%
Feijão	4.0	0.5%	1.2%
Arroz	2.8	0.3%	0.9%
Algodão	1.4	0.2%	0.4%
Cana	9.2	1.1%	2.8%
Café	2.2	0.3%	0.7%
Citros	0.8	0.1%	0.3%
Floresta Plantada	6.5	0.8%	2.0%
Pastagem	172.0	20.2%	52.1%
Area Disponível * Agricultável – (plantada + pastagem)	85.7	10.1%	26.0%



Fonte: Rodrigues (2012).

Produção brasileira de grãos

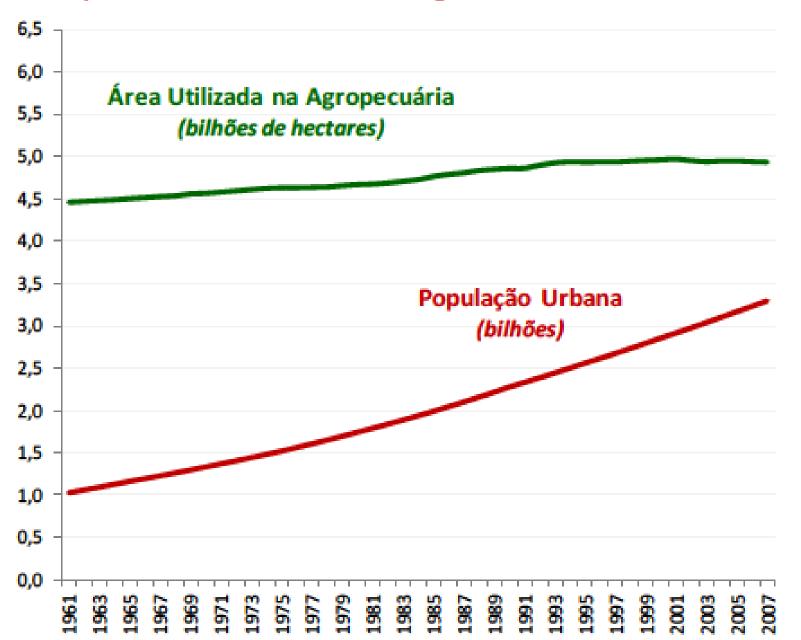
(Safras 1990/91 a 2011/12)

Variação % Safras 1990/91 a 2011/12

Produção: + 173%

Área: + 36%

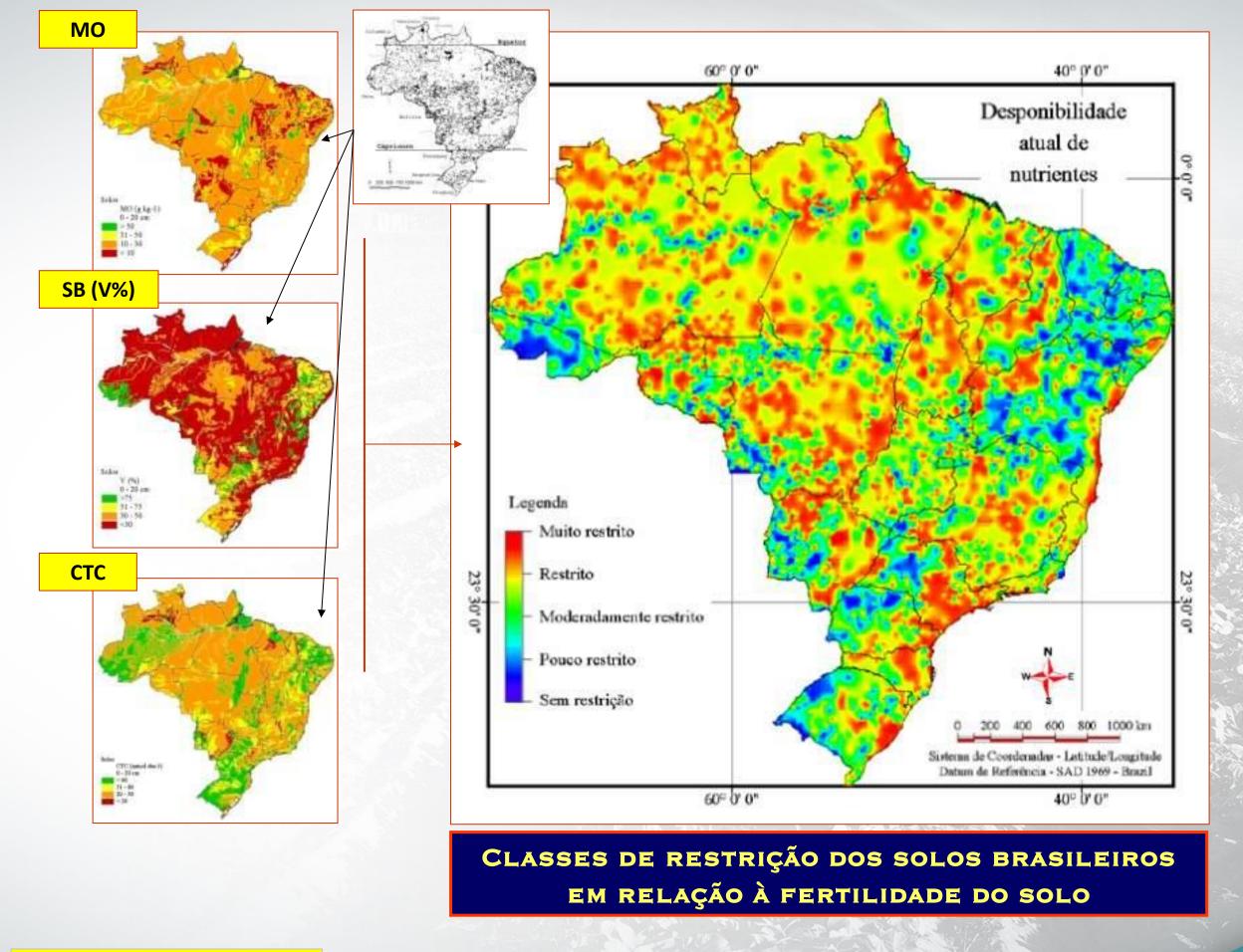
Produtividade: + 100%


Os sucessivos ganhos de produtividade possibilitaram a economia de **52** MMha.

Fonte: Conab (mar/2012). Nota: * 6º Estimativa. Elaboração: Fiesp-Deagro

Escassez de Terras Produtivas

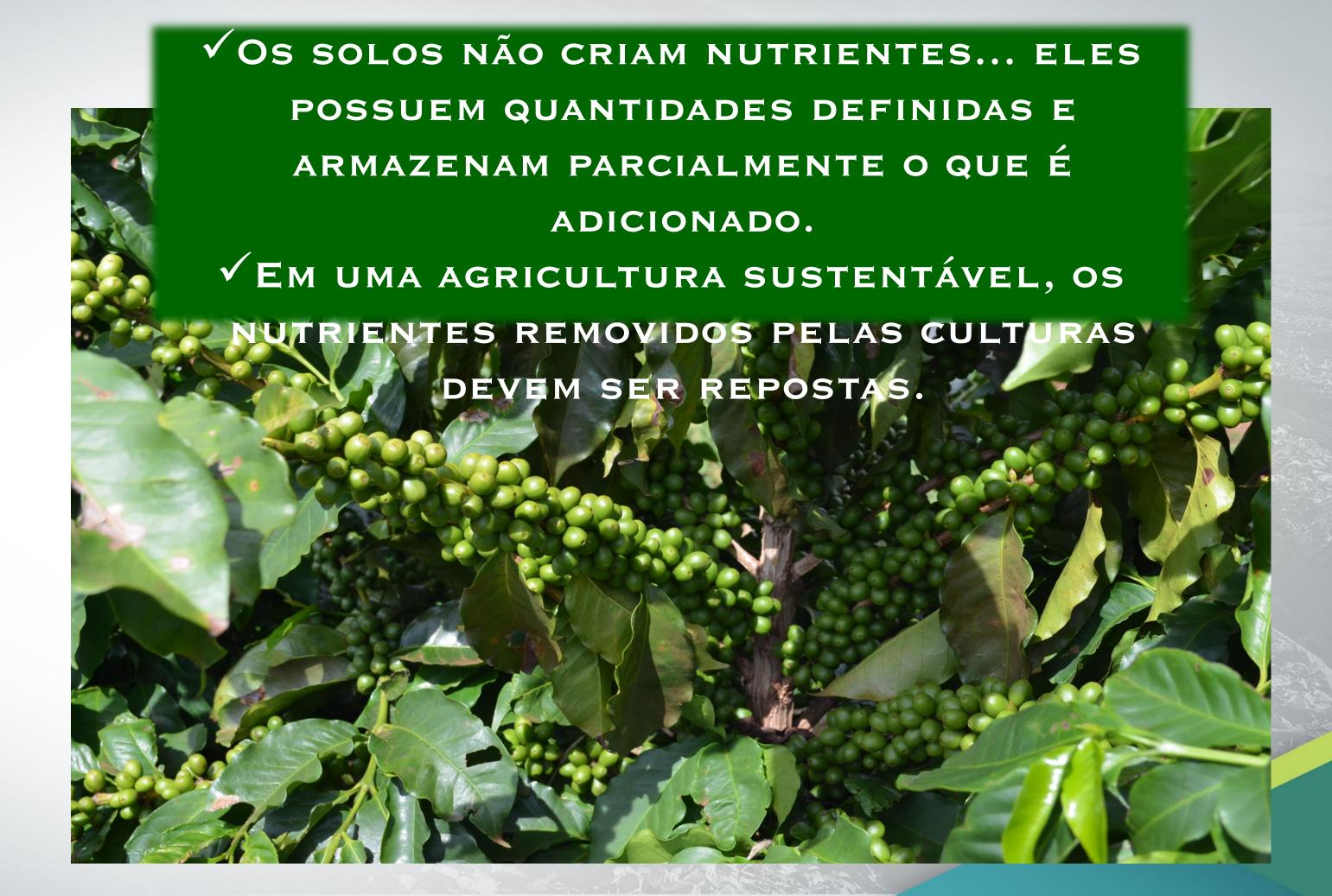
A importância da tecnologia


Nos últimos 50 anos, a população urbana triplicou.

Nesse período, o consumo de grãos aumentou 185% e o de carnes 433%, enquanto a área agrícola, expandiu apenas 11%.

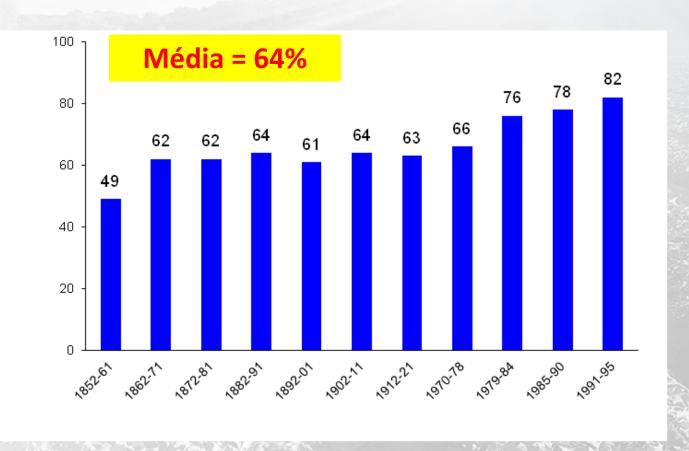
Fontes: FAO e ONU Nota: Grãos - arroz, centeio, cevada, milho, soja, sorgo e trigo Nota: A área utilizada na agropecuária compreende lavouras temporárias, permanentes e pastagens

Elaboração: FIESP-DEAGRO.


Fonte: Sparovek et al.

Solos da Região Tropical/Brasil

- ✓ ACIDEZ (SUPERFÍCIE E SUBSUPERFÍCIE)
- ✓ELEVADA FIXAÇÃO DE FÓSFORO (P)
- **V**BAIXA FERTILIDADE


Fertilizantes no Brasil e no mundo

Broadbalk, Rothamsted, Inglaterra: Experimento contínuo de trigo, 1852-1995

- ✓ EXPERIMENTO CONTÍNUO DE CAMPO MAIS ANTIGO NO MUNDO. COMPARA TRATS SEM E COM FERTILIZANTE. ÎNICIADA EM 1843.
 - \sqrt{N} (145 kg/HA). DESDE 1974 = P (33 kg/HA) E K (59 kg/HA).
- ✓ RENDIMENTO DEVIDO A N COM PK ADEQUADO EM RELAÇÃO A SOMENTE P E K.

Agronomy Journal

Volume 97 January–February 2005 Number 1

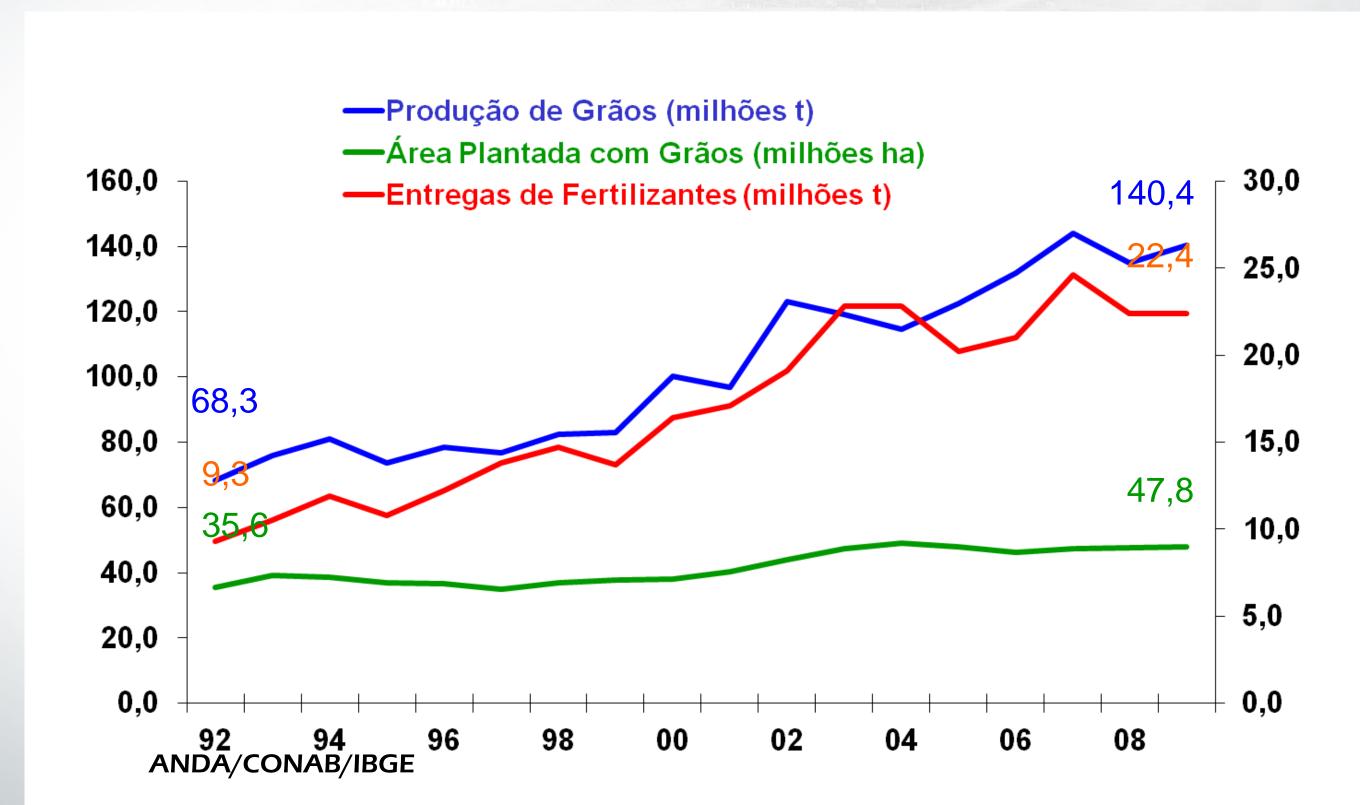
FORUM

The Contribution of Commercial Fertilizer Nutrients to Food Production

W. M. Stewart,* D. W. Dibb, A. E. Johnston, and T. J. Smyth

ABSTRACT

Nutrient inputs in crop production systems have come under increased scrutiny in recent years because of the potential for environmental impact from inputs such as N and P. The benefits of nutrient inputs are often minimized in discussions of potential risk. The purpose of this article is to examine existing data and approximate the effects of nutrient inputs, specifically from commercial fertilizers, on crop yield. Several long-term studies in the USA, England, and the tropics, along with the results from an agricultural chemical use study and nutrient budget information, were evaluated. A total of 362 seasons of crop production were included in the long-term study evaluations. Crops utilized in these studies included corn (Zea mays L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], rice (Oryza sativa L.), and cowpea [Vigna unguiculata (L.) Walp.]. The average percentage of yield attributable to fertilizer generally ranged from about 40 to 60% in the USA and England and tended to be much higher in the tropics. Recently calculated budgets for N, P, and K indicate that commercial fertilizer makes up the majority of nutrient


technology and intensified production often involve a greater need for commercial fertilizer nutrients to avoid nutrient depletion and ensure soil quality and crop productivity. The need for increased inputs correctly raises questions about associated risks. Potential risks are often widely publicized while the associated benefits of an abundant, affordable, and healthful food supply can be overlooked or understated. To judge any such practice or system, the risks must be evaluated in comparison with the benefits. While misuses of agricultural fertilizers have undoubtedly occurred and concerns about how fertilizers affect the environment have sometimes been overstated, the purpose of this article is not to address these issues but to provide evidence of the impact commercial fertilizers have had on agricultural production.

Several attempts have previously been made to estimate how much of the crop production in the LISA is

FERTILIZANTES SÃO RESPONSÁVEIS POR 40-60% DA PRODUÇÃO ATUAL E GLOBAL DE ALIMENTOS...
UMA ENORME CONTRIBUIÇÃO PARA A SOCIEDADE

Evolução de produção, área plantada e consumo de nutrientes (NPK) na agricultura Brasileira (1992-2009)

ALIMENTOS PRODUZIDOS EM SISTEMA ORGÂNICO E CONVENCIONAL, RELATADOS

EM ESTUDOS DE SATISFATÓRIA QUALIDADE (ÚLTIMOS 50 ANOS).

			Analise dos resu	ltados	
Variável	Nº de estudos	Nº de comparações	Diferença média padronizada ⁽¹⁾	P	Altos níveis em produtos orgânicos ou convencionais?
Nitrogênio	17	64	$6,7 \pm 1,9$	0,003	Convencional
Vitamina C	14	65	$2,7 \pm 5,9$	0,84	Sem diferença
Compostos fenólicos	13	80	$3,4 \pm 6,1$	0,60	Sem diferença
Magnésio	13	35	$4,2 \pm 2,3$	0,10	Sem diferença
Cálcio	13	37	$3,7 \pm 4,8$	0,45	Sem diferença
Fósforo	12	35	$8,1 \pm 2,6$	0,009	Orgânico
Potássio	12	34	$2,7 \pm 2,4$	0,28	Sem diferença
Zinco	11	30	$10,1 \pm 5,6$	0,11	Sem diferença
Sólidos solúveis totais	11	29	$0,4 \pm 4,0$	0,92	Sem diferença
Cobre	11	30	$8,6 \pm 11,5$	0,47	Sem diferença
Acidez titulável	10	29	$6,8 \pm 2,1$	0,01	Orgânico

Fonte: DANGOUR et al. (2009).

Ranking da produção e exportação mundial

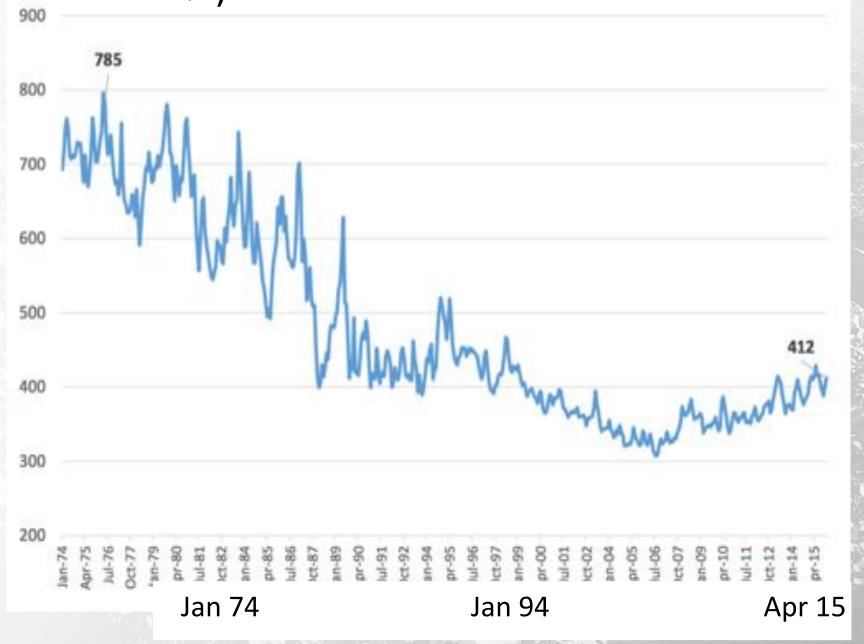
	Suco de Iaranja	Açúcar	Café	Carne	Soja	Frango	Milho	Porco	Celulose
		S						THE	
Produção	55%	21%	34%	17%	30%	15%	8%	3%	14,2 MM ton/ano
				22	22		32	40	
Exportação	77%	45%	28%	20%	39%	35%	18%	8%	10,6 MM ton/ano

Fonte: ABAG

Líder emergente no agronegócio

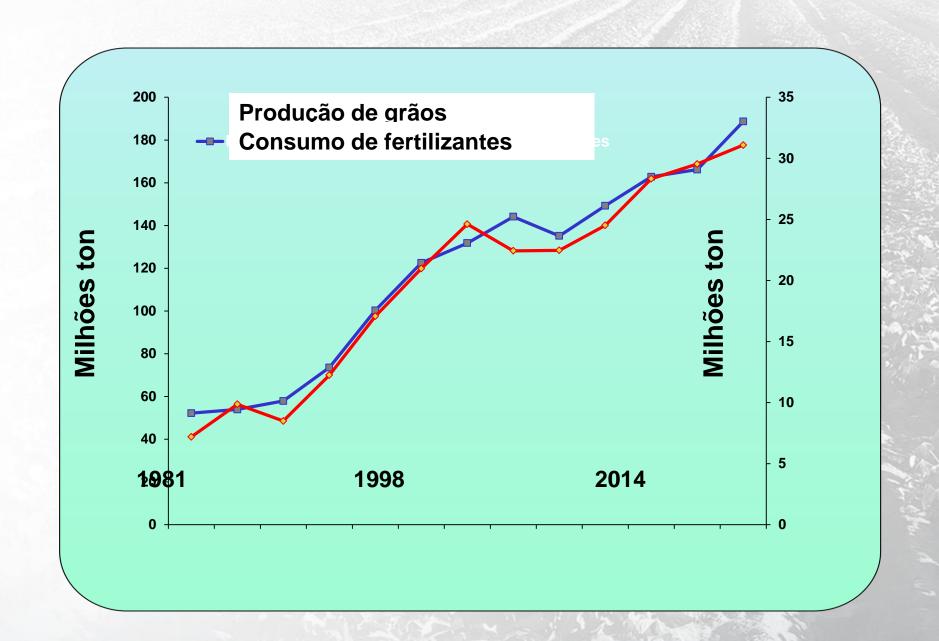
- 3º colocado na exportação de produtos agrícolas
- Maior no saldo exportação vs importação

Maiores exportadores/2015 – US\$ Billões


Países	Exportação	Importação	Balanço
1. EU 28	585	590	-5
2. EUA	163	149	14
3. Brasil	80	5	75
4. China	73	160	-87
5. Canadá	63	38	25

Líder emergente no agronegócio

• Benefícios sociais: 30 anos de diminuição no preço da cesta básica para os


consumidores (total de 45%)

Mercado de fertilizantes

• Crescimento de mercado mais rápido no mundo.

Fonte: ANDA

Mercado potencial de fertilizantes para o futuro

2024 vs. 2014	NPK	N	P_2O_5	K ₂ O
Demanda	Î 22%	↓ -5%	Î 35%	Î 29%
Importação	66%	59%	45%	90%

Fonte: FIESP, 2015

Uso eficiente de fertilizantes

Balanço de nutrientes na agricultura brasileira (2009-2012)

	Rolanco do Mutriantos	N	P_2O_5	K ₂ O	
4	Balanço de Nutrientes	(t)			
	Exportação total das culturas (t)	6.551.280	1.853.162	3.286.358	
	Dedução das exportações (t)	4.706.923	4.428.250	193.566	
	Exportação líquida de nutrientes (I)	1.844.357	1.848.734	3.092.792	
	Total de entradas de nutrientes (II)	2.836.820	3.467.034	3.790.569	
4	Balanço de nutrientes (II - I)	992.463	1.618.300	697.777	
	Desfrute médio obtido com o uso	65%	53%	82%	
	de fertilizantes (I/II x 100)	00 /0	33 /0	02 /0	
	Fator de consumo (II/I)	1,5	1,9	1,2	

Fonte: Cunha et al. – Informações Agronômicas, março/2014

Desfrute médio com o uso de fertilizantes (2009-2012)

Pagião/Estado	N	P ₂ O ₅	K ₂ O
Região/Estado		(%)	
SP	85	54	83
MT	56	57	81
MG	44	36	55
BA	57	34	64
MA	109	40	77
PI	80	40	70
ТО	73	49	84
Brasil	65	53	82

Fonte: Cunha et al. – Informações Agronômicas, março/2014


Desfrute médio com o uso de fertilizantes (2009-2012)

Cultura		Desfrute médio (%)			
Guitura	N	P_2O_5	K ₂ O		
Soja	-	50	99		
Milho	79	96	65		
Cana-de-açúcar	80	70	67		
Café	20	11	45		
Algodão	44	16	58		
Arroz	103	74	91		
Feijão	67	35	115		
Laranja	51	28	67		
Trigo	58	48	35		

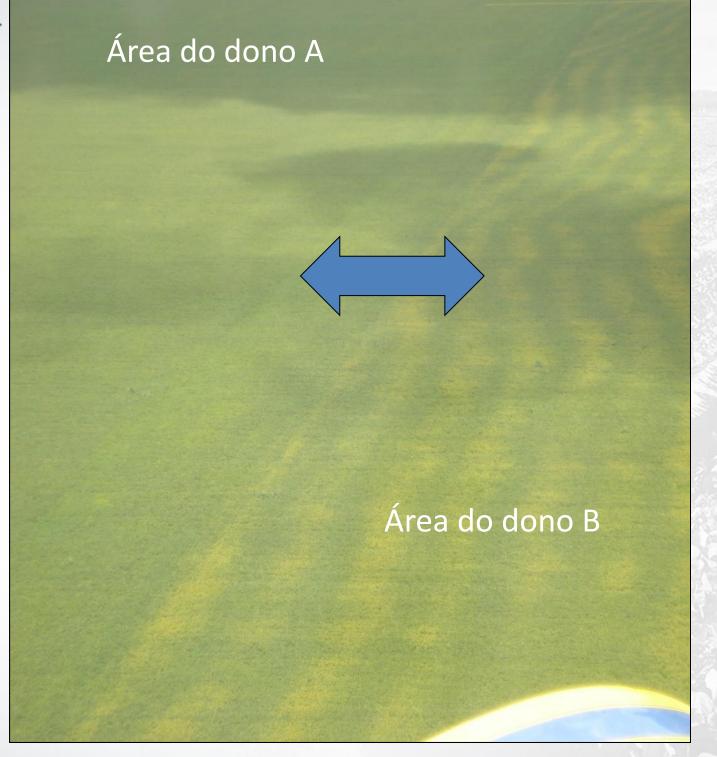
Fonte: Cunha et al. – Informações Agronômicas, março/2014

Manejo atual x eficiência da adubação

O primeiro "nutriente" a ser perdido é a matéria orgânica, que não se compra, mas se maneja. Ela é que condiciona a eficiência de todos os processos do solo!!!!

Manejo atual x eficiência da adubação

Qualidade operacional



Fonte: Márcio Veronese, Fundação MT/PMA (2012)

Efeito direto da qualidade operacional no cultivo

Fonte: Haroldo Hoogerheide, Fundação MT (2010).

Fonte: Denardin, J.E. (EMBRAPA)

Resposta do ambiente

CONCLUSÕES

- As plantas necessitam de nutrientes em quantidades apropriadas e de forma balanceada;
- Os solos não geram nutrientes, eles contém quantidades definidas e armazenam parcialmente os nutrientes adicionados;
- Em uma agricultura sustentável, os nutrientes removidos pelas culturas devem ser repostos no solo;
- Os fertilizantes são insumos essenciais na conquista da segurança alimentar.
- Os fertilizantes utilizados de forma adequada contribuem positivamente para a sociedade e para o ambiente.

História

- Constatação de que o público leigo desconhece os benefícios dos fertilizantes.
- Aproximação com a NFL Nutrients for Life Foundation.
- Formação da NPV Grupo de Trabalho formado por cientistas, pesquisadores, representantes de associações, sindicatos e indústria de fertilizantes.

Missão

Esclarecer e informar a sociedade brasileira, com base em estudos científicos, sobre a importância e os benefícios dos fertilizantes na produção e qualidade dos alimentos, bem como sobre sua utilização adequada.

Valores

- Ética. Nossa conduta é fundamentada em princípios científicos.
- Educação. Nosso foco é educacional e esclarecedor.
- Comunicação. Utilizamos linguagem clara e simples acerca do tema "fertilizantes" e suas variáveis.
- Responsabilidade. Temos compromisso e cuidado em relação às informações veiculadas, bem como no tocante ao tratamento dos grupos não simpatizantes com o tema.

O que será desenvolvido

O que será desenvolvido

Assessoria de imprensa com encontros e releases para jornalistas

O que será desenvolvido

- Pesquisa com público leigo: qualitativa e quantitativa
- Campanhas educativas
- Palestras e workshops educativos
- Publicações e vídeos
- Newsletter
- Revisão bibliográfica de informações técnicas de interesse da sociedade
- Desenvolvimentos de materiais que associam fertilizantes à saúde e nutrição.

Faça parte desse desafio!

O Brasil precisa conhecer os benefícios dos fertilizantes

Entidades envolvidas

Mantenedora

Operador/Realizador

Parceiros Técnicos

Apoiadores

VALE FERTILIZANTES

Knowledge grows

