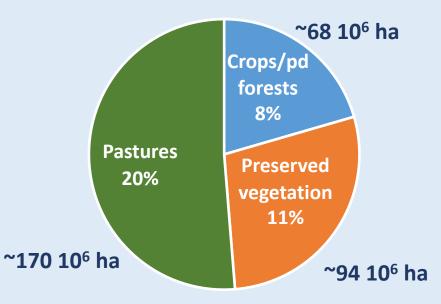
Could fertilizer BMPs for pastures help to mitigate deforestation in Brazil?

Land use in Brazil


- √ 1,871 conservation units
- √ 600 Indian reservations
- √ 2,471 protected areas
 - √ 68 military areas

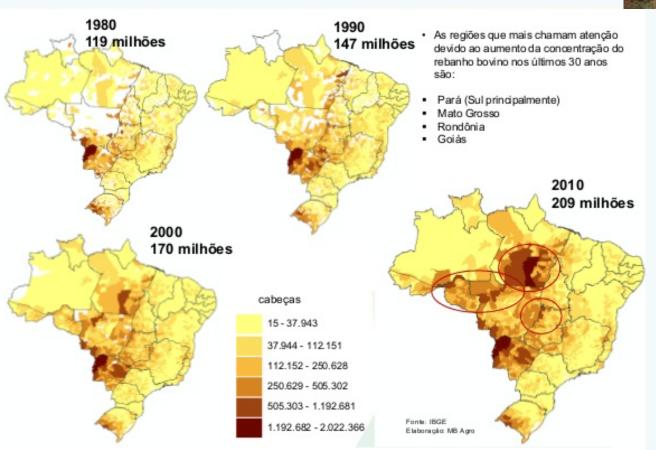
Land use in Brazil:


39% of human occupation

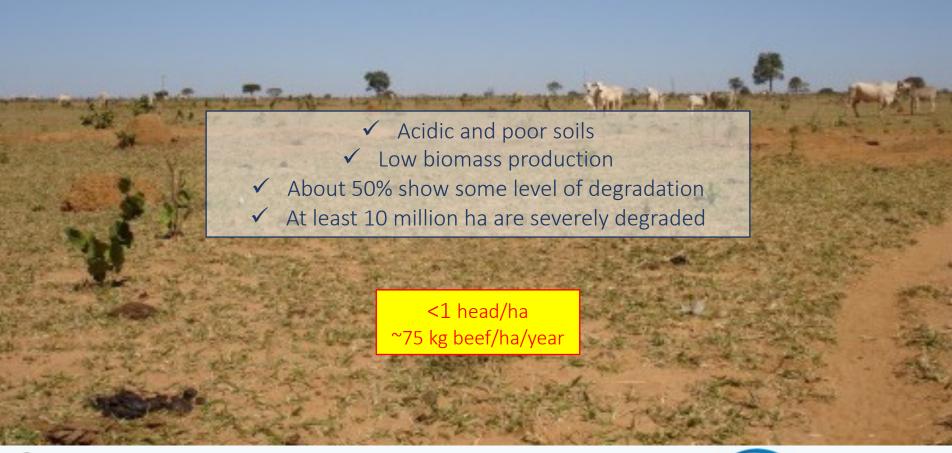
http://www.aprosoja.com.br/storage/site/downloads/comunicacao/publicacoes/cartilha-desustentabilidade-em-ingles-e-mandarim58e3e27052fe6.pdf

Deforestation is in very low pace

For further information, please visit:

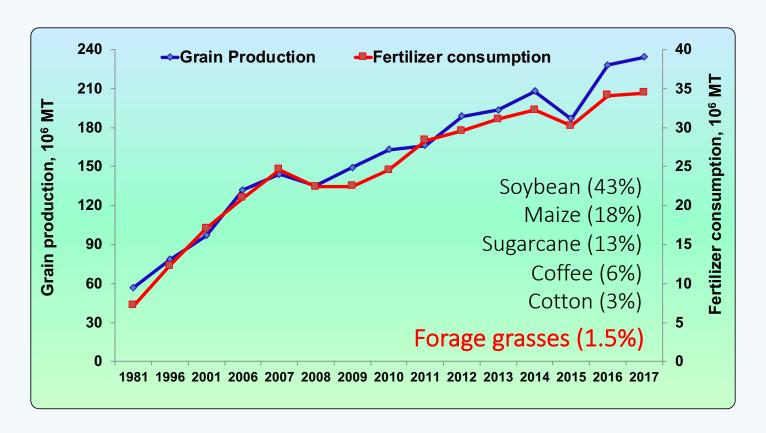

http://www.aprosoja.com.br/storage/site/downloads/comunicacao/publicacoes/cartilha-de-sustentabilidade-em-ingles-e-mandarim58e3e27052fe6.pdf

Evolution of cattle herd in Brazil: size and distribution

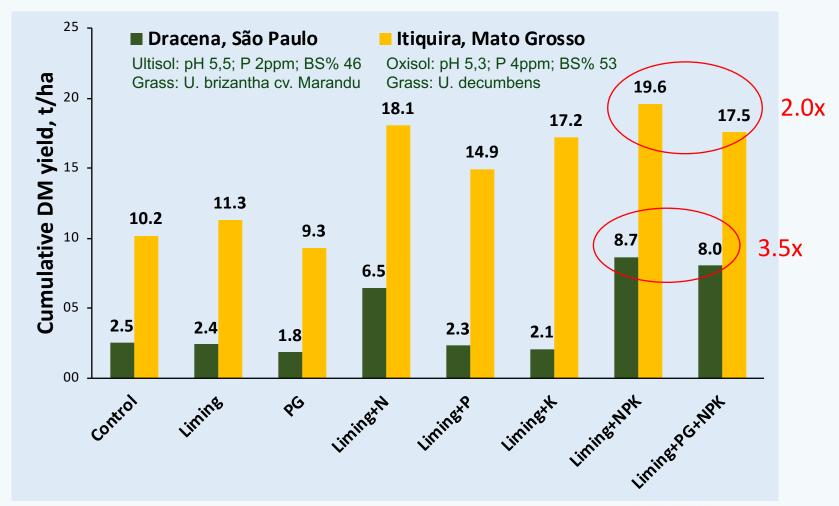


Livestock production came first into the Amazon region

Source: IBGE/MB Agro (2015).


Typical grassland system in most parts of Brazil

Total grain production and fertilizer consumption in Brazil



Average of 3 kg fertilizer product/ha or 1 kg of nutrients/ha

Cumulative DM yield of Brachiaria grass in response to liming, phosphogypsum and nutrient applications in two different locations

Rates: liming (2 t/ha), PG (2 t/ha), N (100 kg/ha), P (45 kg/ha), and K (50 kg/ha).

Stocking rate (SR), average daily gain (ADG), beef productivity (BP), N use efficiency (NUE), and profit in response to N rates in a farm

N rate	SR	ADG	ВР	NUE	Profit
kg/ha	AU/ha	kg/day	ton/ha	kg beef/kg N	US\$/kg N
0	1.4	0.64	0,25	-	-
42	2.2	0,41	0,26	6.2	6.8
166	3.4	0,68	0,61	3.7	4.2
222	4.1	0,76	0,70	3.2	3.5
280	4.8	0,64	0,86	3.1	3.5
304	4.9	0,78	1,05	3.5	3.8

✓ Significant increase in beef production✓ Better use of land

Source: Corsi et al. (2018)

Effect of post-grazing height on grazing efficiency

	Post-grazing height (cm)		
	20	30	50
Pre-grazing biomass (ton DM/ha)	17.5	21.0	20.1
Percentage of leaves, pre-grazing (%)	94%	86%	77%
Grazing efficiency (%)	72%	69%	51%

Adequate grazing management is crucial to maximum use of forage production

Source: Almeida (2011)

Comparasion of livestock production systems in Mato Grosso do Sul state

System	DM yield	Stocking rate	Average daily gain	Beef productivity	Cost	Operating Profit
	ton/ha/year	head/ha	kg/day	kg/ha/year	R\$/kg	R\$/ha/year
1	unknown	1.30	0.35	82.9	3.38	216
2	4.3	1.24	0.46	118.0	3.50	295
3	38.1	10.7	0.62	1,287	3.22	3,559

System 1: MS state average

System 2: low input cattle farm

System 3: high input cattle farm (liming, fertilization, and irrigation)

Ranchers can make more money than grain farmers

Source: Aguiar (2015)

How could it be if BMPs were largely adopted?

	Current situation	How could it be
Herd size (million heads)	189	133
Output rate	22%	30%
Beef production (million ton)	9.1	9.1
Stocking rate (head/ha)	1.0	1.5
Required land (million ha)	158	89

69 million ha saved or available for other purposes as grain crops, planted forests, or natural reservations

Source: CEBRAP (2010)

In conclusion...

- Adoption of BMPs (adequate nutrient use and grazing management) can impact positively on beef productivity
- IPNI has been involved in several extension/scientific activities to educate farmers on how to benefit from fertilizer BMPs:
 - Partnering with national events on livestock systems (since 2014)
 - Organizing a symposium on FBMPs for forage grasses (2018)
 - Making available an online tool on liming and fertilizer recommendations for forage grasses in Brazil (2018)
 - Publishing a book on nutrient use for forage grasses (2019)

For more information, please visit: brasil.ipni.net

