Relationship Between Mineral Nutrition of Plants and Disease Incidence

Don M. Huber

Botany & Plant Pathology Department Purdue University, West Lafayette, IN USA E-mail: huber@btny.purdue.edu

Disease can alter plant nutrition

- Availability
- Impaired utilization
- Mobilization

Frenching of Tobacco caused by Bacillus cereus (Mn toxicity)

Nutrition can alter Disease severity

Effect of Zn sufficiency on Rhizoctonia winter-kill of wheat

Effects of Disease on Plant Nutrition

Disease Type

- Root rots, damping-off, insects, nematodes
- "Maceration" (rot) diseases

- Vascular wilts, leaf spots
- Galls, brooms, over-growth
- Viruses
- Fruit & storage rots

Effect on Plant Nutrition

Immobilization, absorption and distribution

Distribution ("sinks"), depletion, change metabolism

Translocation, distribution, efficiency

Distribution ("sinks") metabolic efficiency

"Sinks", depletion, metabolic efficiency

"Sinks", distribution, nutrient reserves

Reports of Vegetable Diseases Influenced by Nutrients

Effect on Diseases

Disease	Increase	Reduce	Total
Bacterial	22	34	56
Fungal	79	191	270
Virus	19	19	38
Nematode	10	12	22
Total	130	256	386*

*About 4% are reported to both increase or decrease depending on the situation

Reported* Effects of Nutrients on Disease

	Disease is:		
Mineral element	Decreased	Increased	Variable
Nitrogen (N/NH ₄ /NO ₃)	168	233	17
Phosphorus (P)	82	42	2
Potassium (K)	144	52	12
Calcium (Ca)	66	17	4
Magnesium (Mg)	18	12	2
Manganese (Mn)	68	13	2
Copper (Cu)	49	3	0
Zinc (Zn)	23	10	3
Boron (B)	25	4	0
Iron (Fe)	17	7	0
Sulfer (S)	11	3	0
Other (Si, Cl, etc.)	71	6	8

*Based on 1,200 reports in the literature.

Effect of the form of **Nitrogen on Potato Diseases**

	Disease			
Source of N	<i>Rhizoctonia</i> Canker	<i>Verticillium</i> Wilt	Yield (kg/ha)	Percent No. 1
(NH ₄) ₂ SO ₄	6.2 a	3.9 b	32,670	69 a
Ca (NO ₃) ₂	4.8 b	9.4 a	21,340	57 b

EACH ELEMENT FUNCTIONS AS PART OF A DELICATELY BALANCED INTERDEPENDENT SYSTEM WITH THE PLANT'S GENETICS AND THE ENVIRONMENT

Nutrient Balance is Important

INTERACTING FACTORS DETERMINING DISEASE SEVERITY

Competitors, Mineralizers

Implications of Nutrition in Disease

Verticillium wilt of potato

- Observed effects of mineral amendment on disease severity
- Comparison of plant tissue levels of resistant and susceptible plants
- Comparison of plant tissue levels of diseased and non-diseased plants
- Association of conditions affecting a specific nutrient with differences in disease
- A combination of the above

EFFECT OF MINOR ELEMENTS ON YIELD OF TAKE-ALL INFECTED WINTER WHEAT

Minor Element	Wheat Variety AUBURN BEAU		
	kg/l	ha	
None	2,950	2,750	
Cu	2,750	2,880	
Fe	2,950	2,880	
Mg	3,250	2,880	
Mn	3,750	3,350	
Zn	2,950	2,880	

Minor elements co-injected with NH3 + nitrapyrin; sandy loam soil

Correlation of Tissue Zn with *Rhizoctonia* "winter-kill"*

	<u> </u>	ue Zinc % P		lant Kill	
Condition	Without	With(in)	Without	With(in)	
Barnyard Manure	20	41	80	15	
Sediment Area	17	27	100	45	
Tree Leaf-drop Are	a 19	34	65	20	
Sufficiency Level: 20 -150 mg/kg					

*Caused by *Rhizoctonia cerealis*

EFFECT OF AN OAT PRECROP

CROP SEQUENCE	Tissue Mn	Disease Index*	Yield (kg/ha)
Wheat-Wheat-Wheat	20	4.2	1,450
Wheat-Oats-Wheat	55	1.8	3,900
Oats-Oats-Wheat	76	1.0	4,160

*Take-all root & crown rot: 0 = no infection, 5 = dead (white heads)

Factors Affecting Mn Availability and Severity of Some Diseases*

Soil Factor or	Effect on:		
Cultural Practice	Mn Availability	Disease Severity	
Low Soil pH	Increase	Decrease	
Green Manures	Increase	Decrease	
Ammonium Fertilizers	Increase	Decrease	
Irrigation	Increase	Decrease	
Firm Seed bed	Increase	Decrease	
Nitrification Inhibitors	Increase	Decrease	
Soil Fumigation	Increase	Decrease	
Metal Sulfides	Increase	Decrease	
High Soil pH	Decrease	Increase	
Lime	Decrease	Increase	
Nitrate Fertilizers	Decrease	Increase	
Manure	Decrease	Increase	
Low Soil Moisture	Decrease	Increase	
Loose Seed bed	Decrease	Increase	

*Potato scab, Rice blast, Take-all, *Phymatotrichum* root rot, Corn stalk rot

EFFECT OF SOME CULTURAL PRACTICES ON TISSUE Mn & TAKE-ALL

CULTURAL CONDITION	Mn*	Take-all**
Loose Seedbed	11.2	3.5
Firm Seedbed	19.3	2.8
👝 Wheat Precrop	21.0	4.3
Oat Precrop	45.0	1.8
Nitrification	8.9	3.5
Inhibiting Nitrification	17.2	2.4

*Mn Sufficiency Range is 20-150 μg/g **Disease index: 1 = no infection; 5 = dead (white-head)

ENVIRONMENTAL GROUPINGS

• LOW-HIGH pH

- High pH Diseases Increased by Oxidizing Conditions
- Low pH Diseases Increased by Reducing Conditions

• FORM OF NITROGEN

- Diseases Favored by Nitrate Increased by Oxidizing
- Diseases Favored by Ammonium Increased by Reducing

• MICRONUTRIENT

- Diseases Reduced by Mn, Fe, S Increased by Oxidizing
- Diseases Reduced by Ca, Zn, Mg Increased by Reducing

Relationship of Nutrition with Disease

1. Genetics of the Plant

2. Nutrient Form or Availability

3. Rate Applied or Available

4. Method and Time Applied

5. Source of Element & Associated Ions

6. Integration with other practices

Relationship of Nutrition with Disease 1. Genetics of the Plant

Immunity<--->Resistance<-->Tolerance<-->Susceptibility [Nutrient uptake efficiency, nutrient availability]

Difference in Mn Uptake efficiency: Rye is more efficient than wheat Take-all of: Wheat after wheat (front) versus Wheat after oats (back) Glyphosate resistant corn Normal soybean Glyphosate resistant soybean

Normal corn

Effect of the glyphosate resistance gene on Mn uptake efficiency

NUTRIENT UPTAKE EFFICIENCY

- Root Uptake Kinetics
- Root Morphology
- Siderophore Production
- Microbial Activity in rhizosphere

Transcient foliage chlorosis of soybeans after applying glyphosate on a low Mn soil [banded to show effect]

Relationship of Nutrition with Disease 2. Nutrient Form or Availability **Oxidized <--> Reduced, Soluble <--> Non-soluble Inhibition of Nitrification** Nitrous oxides **Organic Nitrogen Denitrification** Ammonium •Nitrite Nitrate Urea Leaching

Nitrogen, Iron, Manganese, Sulfur

Some Diseases Reduced by N03, High pH

Crop	Disease	Pathogen	
Asparagus	Wilt	Fusarium	
Bean	Chocolate Spot	Botrytis	
	Root Rot	Fusarium	
	Root Rot	Rhizoctonia	
Beet	Damping Off	Pythium	
Cabbage	Club Root	Plasmodiophora	
	Yellows	Fusarium	
Celery	Yellows	Fusarium	
Corn	Ear rot	F. moniliforme	
Cucumber	Wilt	Fusarium	
Pea	Damping-Off	Rhizoctonia	
Pepper	Wilt	Fusarium	
Potato	Stem Canker	Rhizoctonia	
Tomato	Gray Mold	Botrytis	
	White Mold	Sclerotinia	
	S. Blight	Sclerotium	

Fusarium

S. Blight Wilt

Diseases Reduced by NH4, Low pH

Crop	Disease	Pathogen
Bean	Root Rot	Thielaviopsis
	Root Knot	Meloidogyne
Carrot	Root Rot	Sclerotium
Corn	Stalk rot	Gibberella
Egg Plant	Wilt	Verticillium
Many	Root rot	Phymatotrichum
Onion	White Rot	Sclerotium
Pea	Root Rot	Pythium
Potato	Scab	Streptomyces
	Wilt	Verticillium
	Virus	Potato Virus X
Rice	Blast	Magnaporthe
Tomato	S. Wilt	Pseudomonas
	Anthracnose	Colletotrichum
	Wilt	Verticillium
	Virus	Potato Virus X
Wheat	Take-all	Gaeumannomyces

Effect of N Form on Yield of Verticillium Infected Potato

90 kg/ha N applied

90 kg/ha N + a nitrification Inhibitor applied

Effect of inhibiting nitrification of ammonia on take-all of wheat

Ammonium N with a nitrification inhibitor

Ammonium N without inhibiting nitrification

Nitrate nitrogen

Effect of **Inhibiting Nitrification** on **Scab** of **Potato** Disease scale: 0 = no surface scab, 2 = 10% surface scab, 6 = 30% scab. **Relationship of Nutrition with Disease** 3. Rate Applied or Available Amount available **Deficiency to sufficiency versus** Sufficiency to excess for the particular plant • Time available Nutrient balance Defi cient Sufficient **Excess**

Effect of Nitrogen Rate on Take-all Root and Crown Rot of Wheat

		Soil	Туре	
	Sa	and	Sanc	ly Loam
N rate	Yield %V	White heads	Yield %	White heads
None	1,270	30	938	50
45	1,540	26	2,350	23
90	1,680	18	3,150	19
135	2,550	12	3,220	20

Relationship of Nutrition with Disease 4. Method and Time Applied Soil <--> Seed <--> Foliage, Side-dress <--> Band <--> Broadcast Spring <--> Fall <--> Split

Susceptibility of Plant, Favorable Environment, Virulence of Pathogen

Effect of nitrogen source on *Rhizoctonia* "winter-kill" of winter wheat

Nitrogen Treatment	Time	Percent Kill
NH ₃ + N-Serve	September	14
Urea Granuals	February	40
28% N Solution	February	60
Urea	April	14

Effect of Time of Nitrogen Application on Rhizoctonia Winter-Kill of Wheat

Effect of Application Method on Mn Availability & Take-all of Wheat

Method	Availability	Take-all effect
Broadcast	Poor	None
	(Rapidly oxidized & immobilized)	
Band	Fair	Positive
	(Limited to the Band)	
Foliar	Good	Secondary
	(Not translocated downward)	
Seed	Good	Positive
	(but available only for seedling)	

Relationship of Nutrition with Disease 5. Source and Associated Ions Gas \leq --> Liquid \leq --> Granule, Anion \leq --> Cation (K₂SO₄/KCl) **EFFECT OF NITROGEN SOURCE ON RHIZOCTONIA OF WINTER WHEAT** Time **Percent Kill** Nitrogen Treatment NH₃ + N-Serve September 14 **Urea Granuals February 40** 28% N Solution February **60** Urea April 14

Relationship of Nutrition with Disease 6. Integration with other practices Rotation, Tillage, Seed rate, Herbicide, pH, Moisture

Severe take-all of wheat following glyphosate on soybeans (left), the non-treated control is right. Less take-all of wheat in a firm (right) than loose seed-bed (left)

No press wheel Press wheel

Mechanisms by which Nutrients Reduce Disease

Increased Plant Resistance

- Physiology phytoalexin, CHO, phenolic production
- Defense- callus, lignituber, cicatrix formation

Disease Escape

- Increased growth roots, leaves
- Shortened Susceptible stage

Increased Plant Tolerance

- Nutrient sufficiency
- Compensation

Inhibited Pathogen Activity

- Reduced virulence
- Survival, multiplication
- Biological control

Effect of Mn on Root Penetration % of Roots Penetrated [Take-all]

VIRULENCE FACTORS OF PATHOGENS

Immobilization/mobilization of nutrients Blast, take-all, frenching Physical wounding **Fungi and nematodes** Maceration - necrosis **Bacterial and fungal enzymes** Vascular plugging **Bacterial gums and Fungal enzymes** Stimulation of physiology & excess growth Hormones, genetic transformation "Toxins" Pyricularin, alpha picolinic acid, etc. Combination

EFFECT OF NITROGEN FORM ON ENZYMES OF RHIZOCTONIA SOLANI

	Nitrogen Form	
Enzyme(s)	NH ₄	NO ₃
Cellulase*	+	
Polygalacturonase**	.3230	.0088
Pectin transeliminase**	.0817	.0083
*Cellulose membrane decomposition		
**Viscosity reduction (V.R./µg protein)		

RHIZOSPHERE INTERACTIONS

- Population of Oxidizers or Reducers
 - Tolerant vrs Susceptible Wheat to Take-all
 - Tolerant vrs Susceptible Tobacco to Frenching
 - Tolerant vrs Susceptible Plants to Crown Gall
 - Biological Control Plant Growth Promotion
 - Oats Resistant to Take-all
 - Glycocyanide Root Exudates toxic to Oxidizers
- Siderophore Production
 - Plant (Rye versus Wheat)(Melons vrs Wheat)
 - Fe, Mn, etc. Immobilization or Solubilization
- Configuration of Root System
 - Susceptible vrs Tolerant Cotton
 - Tap Root vrs heighly branched

MECHANISM OF ACTION

- PREDISPOSITION
 - Nutrient Stress
 - Physiological Regulation
- VIRULENCE
 - Over come plant defenses
 - Production of extra-cellular enzymes
- PATHOGENESIS
 - Compromise plant defenses
 - Membrane permeability
 - Physiologic regulation

USING NUTRIENTS FOR DISEASE CONTROL

 Modify Availability Fertilizing (amending) Changing the environment pH, tillage, seed bed, crop rotation, etc. Microbial enrichment (PGPR) Modify Uptake Improve cultivar efficiency **Root morphology Siderophore production Rhizosphere influence** Improve Cultivar Tolerance

CHANGING REACTIONS

- Modify the Environment
 - Organic amendments (manure)
 - Crop sequence
 - Inorganic amendments (Liming vrs Sulfur)
 - Fertilization
 - Moisture control (Flood falowing, etc.)
- Modify the Plant
 - "Insensitivity" to microbial metabolites
 - Siderophore production
 - Root exudates
- Modify the Microflora
 - "Biological control" PGPR
 - Inhibit nitrification

Changing the Biological Environment

Effect of crop residues on nitrification

Factors Affecting Mn Availability and Severity of Potato Scab

Soil Factor or	Effect on:	
Cultural Practice	Mn Availability	Scab Severity
Low Soil pH	Increase	Decrease
Green Manures	Increase	Decrease
Ammonium Fertilizers	Increase	Decrease
Irrigation	Increase	Decrease
Firm Seed bed	Increase	Decrease
Nitrification Inhibitors	Increase	Decrease
Soil Fumigation	Increase	Decrease
Metal Sulfides	Increase	Decrease
High Soil pH	Decrease	Increase
Lime	Decrease	Increase
Nitrate Fertilizers	Decrease	Increase
Manure	Decrease	Increase
Low Soil Moisture	Decrease	Increase
Loose Seed bed	Decrease	Increase

Fusarium Root Rot of Bean

 Caused by F. solani fsp. phaseoli

 Loss from: Root and hypocotyl rot

 Control: Crop sequence

Nitrate-N

CROP SEQUENCE, FUSARIUM, BEAN ROOT ROT & Yield

EFFECT OF SEED TREATMENT WITH VARIOUS SPECIES OF *BACILLUS* ON WHEAT YIELDS

NUTRIENT MANAGEMENT must:

- Meet Potential Crop Needs
- Use Best Management Practices Rate and form of application Time of application
- Be Economically Feasible
- Include Essential Pest Control
- Be Environmentally Sound

Corn Stalk Rot, caused by *Gibberella zeae* and other fungi Cost farmers \$ 8-10 billion a year

Stalk rot is one of the most important soilborne diseases of corn

Losses Occur Through

- Reduced yield
- Lower grain quality
- Increased harvest costs
- Reduced production efficiency

Kernel Sink Nitrogen is the "driving" force

Vegetative Storage Nitrate, amide, amino acids, proteins

Recycle Efficiency

Nitrate, amino and amide compounds

Root Uptake Nitrate or ammonium

EFFECT OF NITROGEN STRESS

During grain-fill plants cannibalize:

- 1. Storage nitrogen (Recycle)
- 2. Physiological nitrogen (enzymes) Rubisco Pep Carboxylase

3. Structural proteins Glycoprotein (hydroxyproline) in cell walls

EFFECTS of NITROGEN on STALK ROT

• Nitrogen Rate:

Reduces stalk rot up to full sufficiency Excess nitrogen increase stalk rot

• Nitrogen Form:

Ammonium reduces stalk rot through Nitrogen efficiency Physiological interactions

PREDISPOSITION TO STALK ROT: A CARBON OR NITROGEN DEFICIENCY

• CARBON:

Senescence when photosynthesis stops Low carbohydrate reserves increase

• NITROGEN:

Rate response up to sufficiency (Maintains photosynthesis) Excess increases Ammonium reduces (form effect) "Stay green" hybrids are more tolerant

120 # N/acre

120 # N/acre + Nitrapyron 30 Days Post Pollination

Hybrid: B73xMo17

Rice blast, caused by *Pyricularia grisea* (*Magnaporthe grisea*) Costs farmers \$ 5 billion a year

Blast is one of the most important diseases worldwide because rice is a major source of food for 60% of the world's population

Rice blast, caused by *Pyricularia grisea* (Magnaporthe grisea)

Effects of Cultural Conditions on Mn Availability & Blast

Condition	Manganese availability	Blast severity
Upland rice culture	Decrease	Increase
Alkaline soils	Decrease	Increase
Nitrate nitrogen	Decrease	Increase
Aerobic or dry soils	Decrease	Increase
"Low" temperatures	Decrease (uptake	e) Increase
Sandy soil	Decrease	Increase
Manure	Decrease	Increase
High plant populations	Decrease	Increase
Paddy rice culture	Increase	Decrease
Acid soils	Increase	Decrease
Ammonium nitrogen	Increase	Decrease
Inhibiting nitrification	Increase	Decrease
Anaerobic soils	Increase	Decrease
"High" temperatures	Increase	Decrease
Silicon fertilization	Increase	Decrease
Clay & loam soils	Increase	Decrease

Manganese in Rice Blast Lesions

Rice leaves infected with P. grisea

Photograph

Mn oxidation state

Mn distribution

Healthy Tissue L

Blast Lesions

Pathogen induced Mn deficiency in the infection court

A PROPOSED ROLE OF Mn IN BLAST PATHOGENESIS

RESISTANCE

"Take-all" Root, Crown, and Stem Rot of Cereals Caused by *Gaeumannomyces graminis* var *tritici*

MANGANESE AVAILABILITY AND MICROBIAL ACTIVITY

pH: Acid < 5.5 Biological > 7.8 Alkaline Mn Form: Mn++ Activity Mn++++ Availability: Available Not Available

Gaeumannomyces graminis

A. Runner hyphae on wheat root

B. Oxidation of Mn in media

C. Oxidation of Mn in soil

Manganese in Wheat Take-all Disease

Seedlings in agar with 50 mg L⁻¹ Mn²⁺ and infested with G. graminis

Photograph

Infected Root

Agar

Mn oxidation state

Mn distribution

Source: Schulze et al. (1995)

Effect of an Oat Precrop on Take-all

Crop Sequence	Tissue Mn	Disease Index	Yield (kg/ha)
Wheat-wheat-wheat	20	4.2	1,450
Wheat-oats-wheat	55	1.8	3,900
Oats-oats-wheat	76	1.0	4,160

APPROACHES TO IMPROVE DISEASE CONTROL

Mn Seed Content Mn Uptake Efficiency Root Exudate Effects Plant

> MICROBES Mn Reducers Inhibit Nitrifiers

SOIL

Mn Amendment Mn Seed Treatment pH Adjustment Cultural Modification Nutrient Balance

Fusarium Wilt/Yellows Disease

- Disease of fruit, vegetable, fiberand ornamental crops
- Increased with ammonium-N
- Severe in low (acid) pH soils
- Control: Adequate liming PLUS nitrate-N
- (Decreases Mn and Fe availability)

Wilt/Yellows Diseases Caused by *Fusarium oxysporum*

Plant	Disease	Pathogen
Asparagus	Wilt	F. oxysporum f. sp. asparagi
Bean	Yellows	F. oxysporum f. sp. phaseoli
Beet	Yellows	F. oxysporum f. sp.betae
Broccoli, Cauliflower,		
Cabbage,Collard	Yellows	F. oxysporum f. sp. conglutinans
Celery	Yellows	F. oxysporum f. sp. apii
Muskmelon	Wilt	F. oxysporum f. sp. melonis
Pea	Wilt	F. oxysporum f. sp. pisi (race 1)
Pea	Near Wilt	F. oxysporum f. sp. pisi (race 2)
Radish	Yellows	F. oxysporum f. sp. raphani
Spinach	Wilt	F. oxysporum f. sp. spinaciae
Tomato	Wilt	F. oxysporum f. sp. lycopersici
Watermelon	Wilt	F. oxysporum f. sp. niveum

SUMMARY

- The purpose of nutrition and disease control is to increase crop production efficiency.
- Plant fertility is an important part of an IPM program.
- Many cultural practices which reduce disease work by influencing nutrient uptake.
- Nutrition is most effective with "tolerant" varieties.
- Nutrient stressed plants may be more susceptible to disease.

SUMMARY (Continued)

- Any single element may reduce severity of one disease, but increase another.
- No nutrient controls all diseases each disease and environment should be considered within the production system.
- The form of a nutrient may be as important as the rate.
- It is important to maintain a balanced nutrition.