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FOOD SECURITY

The world population is expanding
rapidly and will likely be 10 billion
by the year 2050. Limited
availability of additional arable land
and water resources, and the
declining trend in crop yields
globally make food security a
major challenge in the 215t century.

According to the projections, food
production on presently used land The projected increase in

must be doubled in the next two food production must be
decades to meet food demand of accomplished on the
the growing world population. existing cultivated areas

) L because the expansion of
1 out of 4 people in line o
at a soup kitchen is a child.”™ new land is limited.

From Hunger in America 20017
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WORLD HUNGER
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SOIL DEGRADATION
INCREASES GLOBALLY

Soil limits agriculture

Percentages of total world land area Soil too dry

Chemical
problems

23 Soil too
shallow

Soil too wet
Permafrost
Mo limitations

Only 11 percent of
the world’s soils can
be farmed without
being irrigated,
drained or otherwise
improved.

Source: FAO, 1998
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Decreases in Record Yield Capacity of Crop
Plants by Abiotic and Biotic Stress Factors

B Losses by abiotic stress
i@ Present average yield
i Losses by biotic stress

CORN WHEAT SOYBEAN

10%

Record VYield: 19.3

tons ha
( ) Source: Bray et al., 2000, In Molecular Biology

and Biochemistry of Plants, ASPP






Photeexidative

Pelrlzlefe
a key process involved in cell damage

and cell death in plants exposed to
environmental stress factors



I Mineral nutritional status of
plants greatly influences
occurrence of photooxidative
damage in plants by causing
impairments in photosynthetic
electron transport and CO,
fixation in various ways.
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L/ Photooxidative damage in nutrien
deficient plants can be more serious
when plants are simultaneously

exposed to an environmental stress.



Photosynthetic Electron Transport and
Superoxide Radical Generation
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Photosynthetic Electron Transport and
Superoxide Radical Generation
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FREE RADICAL DAMAGE TO CRITICAL CELL CONSTITUENTS
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E Of the mineral nutrients
nitrogen plays a major role
in utilization of absorbed
light energy and

\) photosynthetic carbon
metabolism.

B In N-deficient leaves an excess of non-
utilized light energy can be expected
leading to high risk for occurrence of
photooxidative damage.



Photosynthetic characteristics in
C. album leaves grown at high light

Growth Chl  Photosynthetic Electron
conditions rate transport rate

(mmol m™ (umol m'zs'l) (umol m™ S'l)

Adequate N 0.90 29 254

Kato et al., 2003, Plant Cell Physiol. 44:318-325



To avoid occurrence of photooxidative damage in response
to excess light energy, thylakoid membranes has a

protective mechanism by which excess energy is dissipated
as heat.

Dissipation of excess light energy is associated with enhanced
formation of xanthophyll pigment zeaxanthin.
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Zeaxanthin is synthesized from
violaxanthin in the light-dependent
xanthophyll cycle to avoid excess energy

high
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Xanthophyll Cycle Composition in Relation to Leaf N of Fuji/M.26
Trees at Noon Under an Incident PFD of 1500 pmol m-2 s-1
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Use of Absorbed Light Energy for
Photochemistry

Low 1

Verhoeben et al., Plant Physiol. 1997, 113: 817-824



Conversion State of Xantophyll Cycle Pigments
at Growth Irradiance in Spinach Leaves

High N Low 1

9% 9% 39 % 26 %

35 %

0
82% Violaxanthin (V)

Verhoeben et al., Plant Physiol. i
1997, 113: 817-824 Zeaxanthln (Z)



B In plants suffering from N deficiency the
conversion state of the xanthophyll cycle
pigments zeaxanthin was enhanced together
with chlorophyll bleaching particularly under
high light intensity.

E These results indicate impaired use of
absorbed light energy in photosynthetic CO,
fixation and thus enhanced demand for
protection against excess light energy in
N-deficient plants.



Nitrogen is involved in protection of
plants from chilling stress

In studies with Eucalyptus seedlings it has been
shown that seedlings with impaired N nutritional
status were less susceptible to photooxidative
damage in winter months.

Experiments were carried out to study the effect of
low temperature stress on lipid peroxidation,
antioxidants and defense enzymes in lemon that is
very sensitive to low temperature.



Effect of Increasing Nitrogen Supply on Lipid Peroxidation
at Normal and Low Temperature in Lemon
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Effect of Increasing Nitrogen Supply on Prolin
Concentration at Normal and Low Temperature in Lemon
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Effect of Increasing Nitrogen Supply on Superoxide
Dismutase at Normal and Low Temperature in Lemon
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Yield of transgenic alfalfa in 3 years of field trials. Cuttings were
planted in 1x3 m plots in replicated trials in spring 1992.



Effect of Increasing Nitrogen Supply on Ascorbate
Peroxidase at Normal and Low Temperature in Lemon
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S. Eker, unpublished Results



Effect of Increasing Nitrogen Supply on Glutathione
Reductase at Normal and Low Temperature in Lemon
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Effect of Increasing Nitrogen Supply on Catalase at
Normal and Low Temperature in Lemon

Jdlow N [ medium N B sufficient N
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S. Eker, unpublished Results



B Catalase enzyme is highly sensitive to low
temperature. Improved N nutrition protects
catalase from inhibition/inactivation by low

temperature stress.

E The activity of most antioxidant enzymes is
increased by low N supply, especially at low
temperature. This lead to suggestion that N
deficiency promotes increased production of
reactive oxygen species.



POTASSIUM IN CROP PRODUCTION

Alleviation of Effects
of Stress Factors
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Effect of Varied K Supply on Photosynthesis in Cotton
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Effect of Elevated CO, on Photosynthesis
at Varied K Supply
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Photosynthetic Electron Transport and
Superoxide Radical Generation
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Growth of bean plants with low K supply
under low and high light intensity
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Enhancement of leaf chlorosis by high light
Intensity i1s not related to differential K
concentration in leaves

Leaf K

concentration Leaf K :
-~ .0.15% concentration
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Enhancement of leaf
chlorosis in Mg-deficient
leaves by high light
intensity is not related to
Mg concentration In

leaves

Partially shaded
bean leaf at low Mg



F Photooxidative damage
to chloroplasts is a
major contributing
factor in development of
K deficiency symptoms
on leaves

F Plants grown under high
light intensity require
more K than plants
grown under low light




Enhancement of photooxidative damage In
K-deficient leaves
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CARBOHYDRATE ACCUMULATION AND CHLOROSIS
IN NUTRIENT-DEFICIENT LEAVES

Inhibitions in photosynthetic CO, reduction and phloem
loading of sucrose play an important role in O, activation and
occurrence of photooxidative damage, especially in Mg or K
deficient leaves

= - ' '
Leaf cl’ﬂ@rogs and néerosis is comﬁyn in Mg and
K deﬁc@’ﬁt leaves, but not in P deficient leaves




PHLOEM TRANSPORT
K and Mg play critical role in phloem transport

xylem
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Accumulation of Phosynthates in K-Deficient
Source Leaves
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Sucrose concentration in source leaves
(mg Glucose equiv. gt DW)




Decrease in Phloem Export of Sucrose by K-Deficiency
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Export of sucrose from bean leaves
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Relative distribution of total carbohydrates
between shoot and roots (%)
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Enzymes involved in H,0,
detoxification in chloroplasts

H,0, GSSG NADPH
X ) X
NADH

MDASA > DHASA NADP*

non-enzymatic

AsA MDASA DHASA Glutathione
peroxidase reductase reductase reductase



Ascorbate Peroxidase Activity of
Source Leaves
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Potassium Improved Photosynthesis
Under Drought Stress
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Effect of increasing K Supply on Percentage of Live Roots
Under Varied Drought Treatments
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Alleviation of Frost Damage by K Supply in Potato
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Chlorophyll (g kg FW)

Alleviation of Salt Stress by K Supply
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Activity of NADPH-
oxidizing enzymes
play an important role in
generation of
superoxide radical
production under
drought, chilling, Zn
deficiency, UV light,
wounding, pathogenic
Infection, etc.
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— .v'.-. NNADPE .v.. o ANd NADPH-
dependent superoxide radical generation

Potassium Deficiency-Induced NADPH-Dependent
Superoxide Radical Generation and Membrane Damage
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Increases in NADPH-Dependent O,
Generation by K Deficiency in Bean Roots

K supply O, generation
(umol) (nmol O,~ FW min-Y)
10 45 (124)
25 42 (117)
10) 50 (139)
100 49 (136)
200 44 (122)

2000 (control) 36 (100)

S. Eker, unpublished results



K Deficiency-Induced Marked Increases in NADPH
Oxidase Activity of Bean Roots
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K Deficiency-Induced Biosynhesis of ABA
(Abscisic Acid) in Roots
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NADPH oxidase and O, Production iIn
Plants Treated with ABA and Drought
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Zn and B deficiencies also affect
I o . .  all _m® = mpw

pnotosyntnetic activities of plants
In various ways.

e Both micronutrients exert marked influences on
photosynthetic CO, fixation and translocation of
photosynthates.

e Any disturbance in the adequate supply of plants
with Zn and B is, therefore, potentially capable of
inducing photooxidative damage



ALSO ZINC-DEFICIENT PLANTS ARE
HIGHLY PHOTOSENSITIVE
Increases in light intensity rapidly cause development of
chlorosis and necrosis in Zn-deficient plants

Growth of Zn deficient bean plants
at different light intensities




Growth of Citrus Trees on a Zn-Deficient Soil




High light-induced damage in B-deficient plants
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Superoxide Generation and
Photooxidative Damage

Photooxidative damage to
membrane and chlorophyll
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Activity of NADPH-
oxidizing enzymes play an
important role in
generation of superoxide
radical under drought,
chilling, Zn deficiency, UV
light, wounding,
pathogenic infection, etc.

Flavin ,,

Flavin o4




NADPH Oxidase Activity in Isolated Tomato and
Tobacco Membranes
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Sagi and Fluhr,2001, Plant Physiol. 126: 1281-1290



There is Increasing evidence suggesting
that Ca is involved in expression of high
tolerance to heat stress in plants.

* Jiang and Huang (2001) showed that Ca treatment protects
cool-season grass species from heat injury expressed as
Increased lipid peroxidation and chlorophyll degradation.

« Exposure of seedlings to heat stress at 40 °C induced lipid
peroxidation and reduced survival of seedlings, and these

effects of heat stress could be inhibited very significantly by Ca
treatment.



Oxidative Damage and Survival in Response of

Heating in Arabidopsis
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Peroxidation

Oxidative Damage and Survival in Response of Heating

in Arabidopsis with and without Ca supply
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Effect of Foliar Application of Ca on Lipid
Peroxidation and Blossom-end

Blossom-end (%)

2.5

- c

O 20+
I T =

T LL

< < 154+
- 8 G)

= =

o g 1.0+
[ S c

Q_\—/
L 27 054

. 0.0 _
Control LowcCa _Foliar Control Low Ca Foliar
Caspray Ca spray

Schmitz-Eiberger et al., J. Plant Physiol. 2002, 159: 733-742






P The existing data indicate that
improving mineral nutritional status of
plants under marginal environmental
conditions is indispensable for sustaining
survival and high yield.

L Impairment in mineral nutritional status
of plants, therefore, exacerbates adverse
effects of environmental stress factors on
plant performance.



r Mineral at adequate levels nutrients
supplied are essentially required for
maintaining photosynthetic activities
and utilization of light energy in CO,
fixation.

L Improving mineral nutrition of
plants is, therefore, a major
contributing factor to the protection of
plants from photooxidative damage
under marginal environmental
conditions.



Remaining challenges include the
better understanding the roles of
mineral nutrients in

i) ROS formation during photosynthesis and
plasma membrane-bound NADPH oxidase,

ii) signaling pathways affecting adaptive
response of plants to environmental
stresses and

i) expression and regulation of genes induced
by mineral nutrient deficiency.



