High Crop Yields in Conservation Tillage Systems?

Tony J. Vyn, Ann Kline, and Ignacio Conti

Why is soybean yield in the United States not increasing as in Brazil?

Trend in soybean yield (conventional in Brazil and transgenic in the United States (kg/ha) from 1996 to 2003)

Source: Faosta (www.fao.org/waicent/portal/estatistics_en.asp)

Soybean Harvest and No-till Double-crop Corn: Brazil Style

Glyphosphate-Resistant Soybean Adoption in United States (estimated from USDA sources)

Key Soybean Yield Challenges since 1996

- 1996-99: Normal environmental and disease stresses plus the rapid adoption of Glyphosateresistant varieties that yielded less than their conventional isolines.
- 2002: Disease pressures.
- 2003: Combined impacts of mid-season excessive rain, soybean aphids, and drought in August-September during pod fill.

Soybean Aphid in 2001, 2003

Threshold for spraying before R-4 is 250 per plant

Soybean Aphid Impacts

Roundup UltraMax Roundup UltraMax Untreated 26 oz/A 104 oz/A

Ohio Susceptible

Delaware Resistant

Jackson Co., IN 2

Jackson Co., IN 1

Slide courtesy of Dr. Bill Johnson, Purdue

Herbicide Families with Known Cases of Resistance

	Home	Resistant Weeds	Researchers Herbicid	les Add Case	Weed Photos Co	ntact	Olympic acts resistant
		GLYCINE by	weeds as of				
#	Species	((Country Click for Details)			Year	June 16, 2004
1.	Conyza bonari Hairy Fleabane	iensis	2003 - South Africa			2003	
2.	Conyza canad Horseweed	ensis	2000 - USA (Delaware) 2001 - USA (Kentucky) 2001 - USA (Tennessee) 2002 - USA (Indiana) 2002 - USA (Maryland) 2002 - USA (New Jersey 2003 - USA (Ohio) 2003 - USA (Mississippi 2003 - USA (North Carol) j ina)		2000	
3.	Eleusine indic Goosegrass	a j	<u> 1997 - Malaysia *Multipl</u>	<u>e - 2 MOA's</u>		1997	
4.	Lolium multiff Italian Ryegrass	l orum s	2001 - Chile 2002 - Chile 2003 - Brazil			2001	
5.	Lolium rigidur Rigid Ryegrass	m	1996 - Australia (Victoria 1997 - Australia (New So 1998 - USA (California) 2000 - Australia (South A 2001 - South Africa) outh Wales) Australia)		1996	Herbicide Resistant Weeds Website
6.	<i>Plantago lance</i> Buckhorn Plant	eolata (2003 - South Africa			2003	www.weedscience.org

Photo Credit: Greg Stewart

Indiana Tillage Adoption, 1990-2003

(percent of total cropland for a specific crop in a no-till system)

Source: Purdue University-Transect Data

So What is Problem with No-till Corn?

Yields?

Pests?

Maturity?

Planting Date?

Nutrient Availability?

Corn Yield Response to Tillage and Rotation, Long-term Tillage Study, IN, 1975-2003.

Tillage	je Corn/Soybean Con't. Cor		Corn	Yield Gain	
	t/ha	%	t/ha	%	
Plow	11.07		10.58		5%
Chisel	11.10	100%	10.29	97%	8%
Ridge-til	11.39	103%	10.49	99%	9%
No-till	10.83	98%	9.18	87%	18%

* Since 1980

Source: Dr. Bob Nielsen, Purdue and USDA

Corn Yields Following Soybeans, West Lafayette, IN, 1975-2003.

Strip Tillage for Corn?

What are we after with strip-till?

- Yields (relative to no-till; stability)
- Planting Timeliness
 (pre-plant soil conditions)
- Fertilizer Placement Efficiencies (systems approach)

Soybean Yield Response to Tillage and Rotation, Long-term Tillage Study, IN, 1975-2003.

Tillage	Soybe	an/Corn	Con't. S	Soybean	Yield Gain for Rotation
	t/ha	% of plow yield	t/ha	% of plow yield	
Plow	3.33		3.04		10%
Chisel	3.23	97%	2.89	95%	12%
Ridge*	3.21	96%	2.84	93%	13%
No-till	3.16	95%	2.91	96%	9%

*Since 1980

Continuous versus Rotation Effects on No-till Soybean Yield, 1975-2003.

Soybean Cyst Nematode Populations with crop rotation and tillage (2003)

Potassium Stratification Long-Term Tillage (IN, 1975-94)

Source: Holanda et al. (1998)

Conservation Tillage Doesn't Alter K distribution appreciably

Does K placement Matter? Implications for Management?

Mean Soil-test K Stratification at Davis-PAC

Placement in presence of high soil K variability?

Soybean Yields for 2001

Plot Blocks Soybean Yield (bu/ac)

> 5 - 25 25 - 35

High oil corn yields in response to K placement (Davis, IN, 2000-01)

Soil-test K at 5-15 cm

Source: Vyn et al., Better Crops #4, 2002

No-till Soybean Height Differences at Davis PAC in 2003

No K (2000-2002)

Broadcast plus Starter K (2000,2002

Strip Tillage with Fertilizer Banding

Impact of K Banding Depth in Corn?

High Yield Corn Response to Placement

Hybrids:

- 1. Pioneer 34B24
- 2. Pioneer 34M95

Populations:

- 1. 80,000 per ha
- 2. 105,000 per ha

P&K Fertilizer

- **Placements:**
 - 1. Control
 - 2. Broadcast
 - 3. Shallow Band (15cm)
 - 4. Deep Band (30 cm)

5. Shallow + Deep (15 cm and 30 cm)

Notes: Soil P was 15-25 ppm and Soil Exchangeable k was 120-160 ppm P₂O₅ rate was 97 kg/ha and K₂O rate was 125 kg/ha

Sponsor: PPI-FAR 2001-2003

Placement Effects on Leaf K % Pion. 34M95 in 2003

K %

Yield Evaluation

Corn Yield Response to Fertility Placement, West Lafayette, IN, (2001-2002).

(Mean of 2 hybrids and 2 populations)

Note: P_2O_5 rate was 97 kg/ha, and K_2O rate was 125 kg/ha

Corn Yield Response of Pion. 34M95 to Alternate P plus K Placements in 2003

15 cm Placement Effects on Corn Yield in 2003

Consistency of Resource Availability in High Population Environments ? An example from one hybrid at 105,000 plants/ha

Accepted Hypothesis:

Previous Research on Emergence Uniformity

Part of the stand planted 7-21 days later
 Yield reduced from 5 to 22%

Source: Nafziger *et al.* (1991), Ford & Hicks (1992)

What about the effects of Emergence variability amongst plants planted on the same day ????? <u>Measurements for corn uniformity</u> <u>experiments (2000-2004)</u>

- Daily emergence counts (0 to 100%).
- Plant populations (emergence & harvest).
- Individual plant spacing within row
- Plants heights and V-stages (4-6 and 6-8 weeks).
- Daily silk emergence (0 to 100 %).
- Grain yield.

<u>Measurements</u>

Linear Regressions of Individual Plant Yield for Early Planting in 2000

Emergence Time in 2003 (average of 3 hybrids at West Lafayette)

Individual plant Ear Yield versus Relative Seedling Emergence in 2003

Tentative Conclusions:

For consistent individual ear weights and high yields we need to make sure "No Plant is Left Behind!"

_	Emergence date	
Effec	t	Plant Viold
+	Silking Date & Plant Height	Fiditt Held

USB-FAR Projects in 2003

Split-split plot Treatments:

Prior Corn Hybrids (2)

Prior Fertility:

- 1. Control
- 2. Broadcast P and K
- 3. Band P and K (15 cm)
- 4. Band P alone
- 5. Band K alone

Potassium in 2003:

- 1. None
- 2. Broadcast

Conclusions:

- In the short term, there is no guarantee that U.S. farmers who are already capable managers can achieve ever higher corn and soybean yields. Achieving higher yield levels is especially difficult for farmers who are already near the top for their state or county.
- Reasons for the "yield plateau" almost always involve plant stress in the growing season, usually associated with weather, pests, or their combination. Newer varieties are superior to the old ones, but sometimes it is less of a "real genetic gain" and more of an increase in tolerance to the ever changing pests.
- High Yield Corn Production will require more consistency in individual plant ear weights at high plant populations. That consistency is not just an emergence date factor, but one of competition with adjacent plants for most of the growing season.

Conclusions (continued):

- Continuous no-till has distinct advantages for soybean in soybean intensive rotations, and for corn which follows soybean.
- Nutrient stratification issues in long-term conservation tillage are encouraging more banded placement, usually before corn, and often with a strip-tillage system.
- Banded P and K placement may indeed be more important for corn in conservation tillage systems planted at higher population densities, and when soil tests for P and K are average.

Thanks for Listening! I have much to learn from you, and much more research to do!

Funding: PPI-FAR Purdue Research Pioneer (Dupont) Case

Equipment Donations: John Deere Case-DMI

