Glyphosate Effects on Diseases of Plants

Symposium: Mineral Nutrition and Disease Problems in Modern Agriculture: Threats to Sustainability

O II HO-C-CH2-NH-CH2-P-OH I OH N-(phosphonomethyl)glycine

D. M. Huber, Emeritus Professor Botany & Plant Pathology Department Purdue University, West Lafayette, IN 47907

Glyphosate Effects on Diseases of Plants

Background - review

- Interacting factors for disease
- Some cultural factors affecting nutrition and disease

Glyphosate

- Characteristics
- Glyphosate resistance
- Reported effects of glyphosate

Effect of glyphosate on disease

- Take-all root and crown rot of cereals
- Corynespora root rot
- Marasmius root rot of sugarcane
- Fusarium head scab of cereals
- Citrus variegated chlorosis (CVC)
- Rust diseases
- Rice blast
- Mechanisms to reduce disease
- Conclusions

INTERACTING FACTORS DETERMINING DISEASE SEVERITY

Vigor, Stage of Growth, Root Exudates <u>Resistance</u> **PLANT** Susceptibility

TIME

{{||1111111

PATHOGEN Population Virulence Activity

ABIOTIC ENVIRONMENT

Nutrients Moisture Temperature pH (redox potential) Density, gases

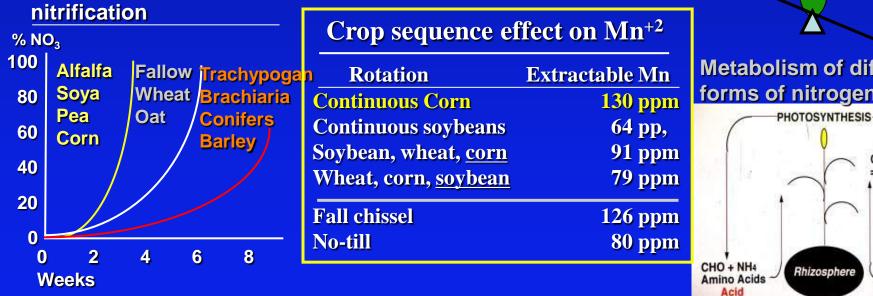
BIOTIC ENVIRONMENT

Antagonists, Synergists Oxidizers, Reducers Competitors, Mineralizers [Fe, Mn, N, S]

Changes in Agricultural Practices Change the Interactions

Crop Sequence

Biotic environment Nutrition Nitrification Organic matter


Tillage/No-till

Residue break down Soil density/aeration Pathogen survival Nutrient distribution Denitrification

Fertilization

Rate/form Time applied Source/assoc. ions Inorganic Organic Sufficient Deficient Excess Metabolism of different forms of nitrogen PHOTOSYNTHESIS CHO + H + NO3 = Amino Acids CHO + NH4 Rhizosphere NOa Amino Acids Alkaline

Effect of crop residue on

Factors Affecting N Form, Mn Availability and Severity of Some Diseases*

Soil Factor or Cultural Practice	Nitrification	Effect on: Mn Availability	Disease Severity
Low Soil pH	Decrease	Increase	Decrease
Green Manures(some)	Decrease	Increase	Decrease
Ammonium Fertilizers	Decrease	Increase	Decrease
Irrigation (some)	Decrease	Increase	Decrease
Firm Seed bed	Decrease	Increase	Decrease
Nitrification Inhibitors	Decrease	Increase	Decrease
Soil Fumigation	Decrease	Increase	Decrease
Metal Sulfides	Decrease	Increase	Decrease
High Soil pH	Increase	Decrease	Increase
Lime	Increase	Decrease	Increase
Nitrate Fertilizers		Decrease	Increase
Manure	Increase	Decrease	Increase
Low Soil Moisture	Increase	Decrease	Increase
Loose Seed bed	Increase	Decrease	Increase

*Potato scab, Rice blast, Take-all, Phymatotrichum root rot, Corn stalk rot

Glyphosate Started Changing Agriculture 30+ Years Ago

The most widely used agricultural chemical!

- Broad-spectrum (non-selective) weed control
 - Paraquat, Tordon, Spike, salt
- Short "direct" residual activity
- Low direct mammalian toxicity
- Economical use
- TRANSGENIC PROTECTION selectivity

A very strong metal chelator with Potential interaction with all life Through mineral deprivation "All flesh is grass" Isaiah 40:6, 800 BC

Some Characteristics of Glyphosate

 A chemical chelator 	Chelating stability constants of glyphosate			
Small amount needed	Metal ion	[<u>ML]</u> [M][L]	[<u>MHL]</u> [M][H][L]	[<u>ML2]</u> [M][L2]
Tightly bind mineral elements	Mg2+	3.31	12.12	5.47
Immobilizes Mn, Fe	Ca2+ Mn2+	3.25 <mark>5.47</mark>	11.48 <mark>12.30</mark>	5.87 <mark>7.80</mark>
	Fe2+	6.87	12.79	11.18
• Non-specific herbicidal effective	ct Cu2+	11.93	15.85	16.02
	<u>Fe3+</u>	16.09	17.63	<u>23.00</u>

Tank mix impairs herbicidal activity

Some Chemical Chelators in Agriculture

Mn, Fe chelating compounds

- Piricularin, alpha-picolinic acid rice blast toxin
- Glyphosate non-specific herbicide
- Reducing activity photosynthesis
- Cu chelating compounds
 - Nitrapyrin, methyl pyrazole inhibit nitrification
 - Tordon herbicide specific to broad-leaved plants
 - Oxidizing activity (lacases, oxidases)
- Various plant root exudates

 Induced with nutrient deficiency

Source of Chelators

Natural metabolites

Plant root exudates - organic acids, siderophores Microbial metabolites - organic acids, toxins Soil organic matter

Synthetic compounds
 Herbicides - glyphosate, Tordon
 Nitrification inhibitors - nitrapyrin
 EDTA, DTPA, citric acid, amino acids

 Important because micronutrients are the: Activators Inhibitors Regulators of plant physiological functions

Characteristic Effects of Glyphosate

Systemic in plants

 A modified essential amino acid
 Concentrates in meristematic tissues
 Shoot and root tips
 Reproductive structures

- Distributed throughout the rhizosphere in root exudates
- Non-specific herbicidal effect
- Toxic to some soil microbes; stimulates others
 - Changes nutrient availability
 - Changes virulence of some pathogens

Some Microbial Interactions with Glyphosate

- Changes the soil microbial "balance"
- Toxic to beneficial organisms:
 - Rhizobium, Bradyrhizobium
 - Inhibits N-fixation
 - Mn reducing organisms (Biocontrol)
 - Trichoderma spp, Bacillus spp
 - Mychorrhizae
 - Glomus mossea Zn, P uptake

Stimulates:

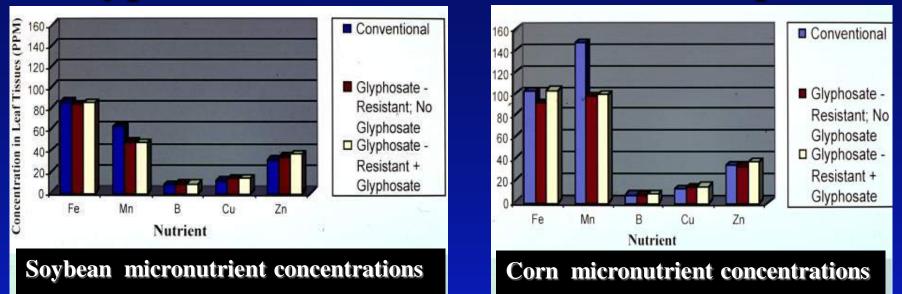
- Mn oxidizing organisms
- Fusarium, other fungi
 - K sink immobilization
- Increases pathogens:

Manganese Availability pH 5.2 to pH 7.8 Rhizosphere biology

Root nodules reduced

with glyphosate

Fungal Mn oxidation in soil Mn oxidizers from soil Control Glyphosate

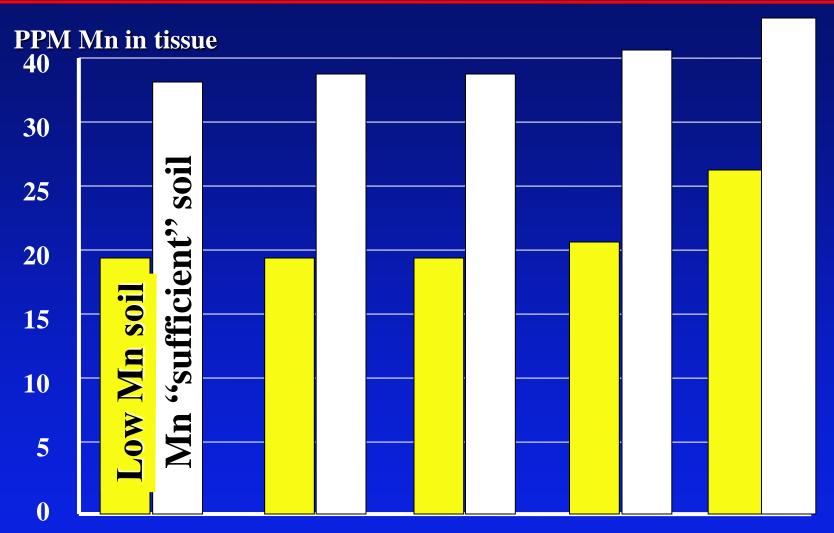

Roundup Ready® Gene [Greatly expanded usage of glyphosate] **Confers** "tolerance" to glyphosate Alternate metabolic pathway introduced Slows down some physiologic processes **Provided selective herbicidal activity** There are several "modifiers" possible Changes physiology of the plant (N metabolism) Incomplete "protection" of meristematic and reproductive tissues - depends on: **Time of application Method of application**

Crop species

• Often causes a "Yield Drag"

Mis-shaped cotton boll Normal Glyphosate from glyphosate

"Glyphosate" Gene Effect on Mn Uptake



Mn Efficiency of Isogenic soybeans - after Gordon, 2007

Isoline:	K	S4202	KS	4202 RR	Difference*
Mn applied (lb./a)	Yield (bu/a)	Tissue Mn (ppm)	Yield (bu/a)	Tissue Mn (ppm)	Yield Tissue Mn (bu/a) (ppm)
0	76.9	75	64.9	32	-12.0 - 43
2.5	76.1	80	72.8	72	- 4.1 - 3
5.0	74.9	92	77.6	87	+ 0.7 + 12
7.5	72.6	105	77.6	95	+ 0.7 + 10

* Difference compared with 0 Mn of normal

Residual Chelation Effect of Glyphosate on Mn

None - 4 days Same time + 4 days +9 days Time Mn Applied Relative to Glyphosate (UltraMax®)

REPORTED EFFECTS OF GLYPHOSATE

• Reduced Mn & Fe uptake*

Root & foliage [K reduced also)

Immobilization of Mn*

Translocation

Reduced physiological efficiency

• Reduced root nodulation & N-fixation*

Soil Microflora changes - Root exudates Stimulatory to Fusaria, oxidizers, etc. Toxic to manganese reducers and Rhizobium

- Increased drought stress*
- Earlier maturity*
- Interaction with some diseases* *Can be modified by Mn or other micronutrient application

Effect of the glyphosate resistance gene on Mn uptake efficiency

Normal corn

resistant corn

Normal soybean

resistant soybean

Glyphosate

Glyphosate

100

50

Some Diseases Increased by Glyphosate

Host plant

Apple Banana **Barlev** Beans Bean Bean Canola Canola Citrus Cotton Cotton Cotton Grape Melon **Soybeans Soybeans** Soybeans Sugarcane Tomato Various Weeds Wheat Wheat Wheat Wheat Wheat

Disease Canker Panama Root rot Root rot **Damping off** Root rot **Crown rot** Wilt (New) CVC **Damping off Bunchy top** Wilt Black goo Root rot Root rot Target spot SDS Decline Wilt (New) Canker Biocontrol **Bare patch Glume blotch** Root rot Head scab Take-all

Pathogen

Botryosphaeria dothidea Fusarium oxysporum f.sp. cubense Magnaporthe grisea Fusarium solani f.sp. phaseoli *Pythium* spp. Thielaviopsis bassicola Fusarium spp. Fusarium oxysporum, F. avenaceum Xylella fastidiosa Pythium spp. Manganese deficiency F. oxysporum f.sp. vasinfectum Phaeomoniella chlamydospora Monosporascus cannonbalus Corynespora cassicola Corynespora cassicola Fusarium solani f.sp. glycines Marasmius spp. Fusarium oxysporum f.sp. pisi Phytophthora spp. Myrothecium verucaria Rhizoctonia solani Septoria spp. Fusarium spp. Fusarium graminearum Gaeumannomyces graminis

Some Diseases Reduced by Glyphosate

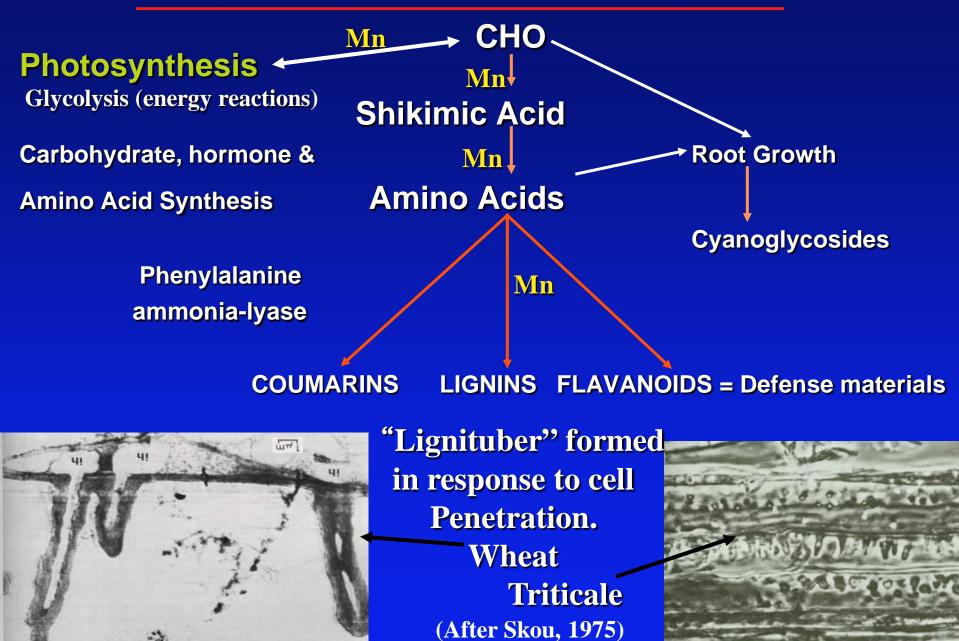
Ho <u>st plant</u>	Disease	Pathogen
Soybean	Rust	Phycopsora pakyrhiza
Wheat	Rust	Puccinia graminis

Plant Pathogens Affected by Glyphosate

Pathogen

Pathogen

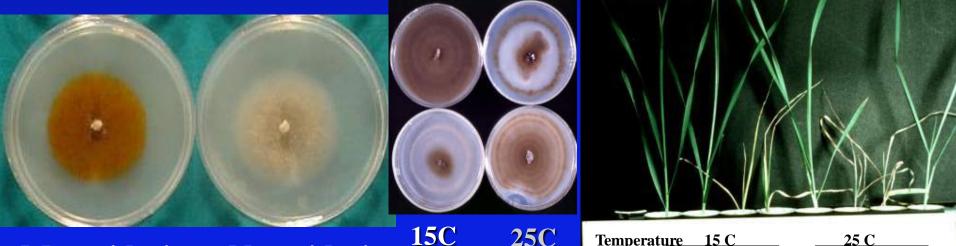
<u>Increase:</u>


Botryospheara dothidea Corynespora cassicola Fusarium avenaceum F. graminearum F. oxysporum f. sp cubense F. oxysporum f.sp (canola) F. oxysporum f.sp. glycines F. oxysporum f.sp. vasinfectum F. solani f.sp. glycines F. solani f.sp. phaseoli F. solani f.sp. Pisi Gaeumannomyces graminis Magnaporthe grisea Marasmius spp.

Monosporascus cannonbalus Myrothecium verucaria Phaeomoniella chlamydospora Phytophthora spp. Pythium spp. Rhizoctonia solani Septoria nodorum Thielaviopsis bassicola Xylella fastidiosa

<u>Decrease (obligate pathogens):</u> *Phykopsora pakyrhiza Puccinia graminis*

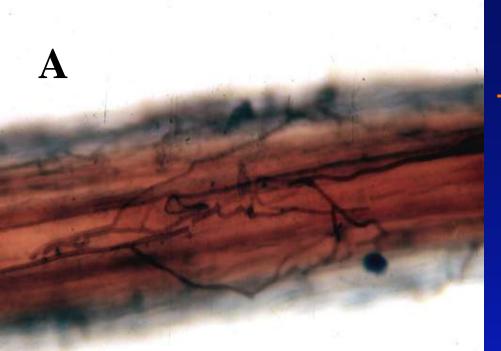
Abiotic increase: Mn deficiency diseases


Physiologic Roles of Manganese

Take-all of Cereals

- the Pathogen

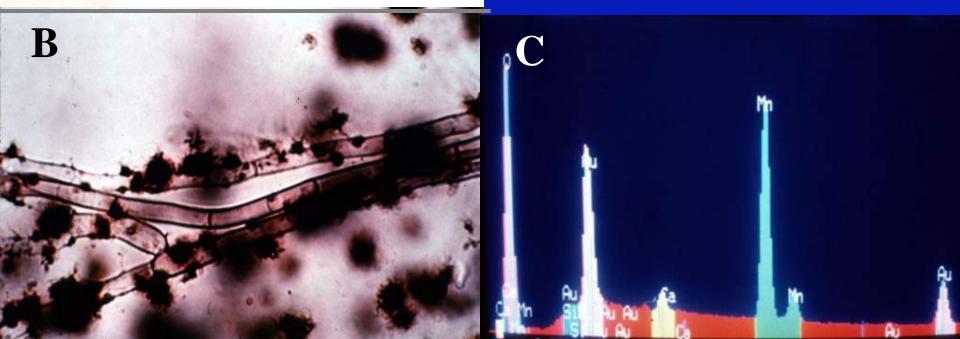
- Gaeumannomyces graminis var tritici
- Common soilborne fungus endemic world-wide
 - 600 "world" isolates were almost identical in peptidase profiles
 - Can distinguish Gaeumanomyces graminis var tritici from G. graminis var graminis
- Virulence associated with manganese oxidation
- Very high tolerance for Mn


to

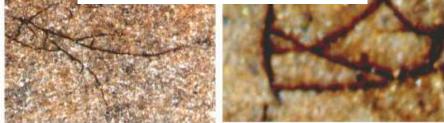
15C

Mn oxidationNo oxidation15C
toVirulentAvirulent25C

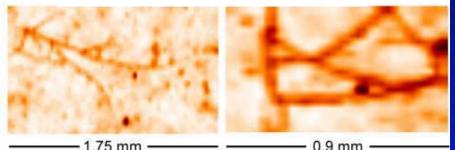
Temperat	ure	15	5 C			25	С	
Isolate	X	Α	В	С	X	Α	B	С
Mn Oxid.	0	0	+	+	0	+	+	0
VIRULE	NCE	EAN	D M	ANG	NAESE	OX	IDA	ΓION



Ectotrophic growth of Ggt on wheat root


The Pathogen

Gaeumannomyces graminis


- A. Ectotrophic growth on root "Runner" hyhae on wheat root
- **B.** Extracellular oxidation of Mn
- C. Dispersive X-ray microanalysis of ectotrophic mycelium on root

Hyphal networks in soil

XANES - MnO₂ distribution

More intense with high soil moisture

Gaeumannomyces oxidizes Mn in Soil, rhizosphere, and root tissue

MnO₂ in wheat root hair cell

Severe take-all spots in wheat

Severe Mn deficiency in double-crop Spybeans after severe take-all

Factors Affecting N Form, Mn Availability and Severity of Some Diseases*

Soil Factor or Cultural Practice	Nitrification	Effect on: Mn Availability	Disease Severity
Low Soil pH	Decrease	Increase	Decrease
Green Manures(some)	Decrease	Increase	Decrease
Ammonium Fertilizers	Decrease	Increase	Decrease
Irrigation (some)	Decrease	Increase	Decrease
Firm Seed bed	Decrease	Increase	Decrease
Nitrification Inhibitors	Decrease	Increase	Decrease
Soil Fumigation	Decrease	Increase	Decrease
Metal Sulfides	Decrease	Increase	Decrease
High Soil pH	Increase	Decrease	Increase
Lime	Increase	Decrease	Increase
Nitrate Fertilizers		Decrease	Increase
Manure	Increase	Decrease	Increase
Low Soil Moisture	Increase	Decrease	Increase
Loose Seed bed	Increase	Decrease	Increase

*Potato scab, Rice blast, Take-all, Phymatotrichum root rot, Corn stalk rot

Nitrate AUBURN Ammonium

Effect of N form & inhibiting nitrification on take-all and rhizosphere Mn oxidizers

A. N form on Take-all
B. Manganese oxidizers
C. -/+ Nitrification inhibitor

Effect of Cultural Practices on Tissue Mn and Take-all

Cultural Condition	Mn*	TA index
Loose Seedbed	11.2	3.0
Firm Seedbed	19.3	2.4 No press wheel Press wheel
Nitrification (normal)	8.9	3.2
Inhibiting Nitrification	17.2	2.0
🔶 Wheat-wheat- <u>wheat</u>	20.0	4.8
Wheat-oats- <u>wheat</u>	55.0	1.4
Oats-oats-wheat	76.0	0.5

*Wheat tissue Mn, PPM; Take-all index = 1-5 (severe

Take-all and Populations of Mn-oxidizing Rhizosphere Bacteria

Cattle dung (manure)

Impact of Glyphosate on Take-all

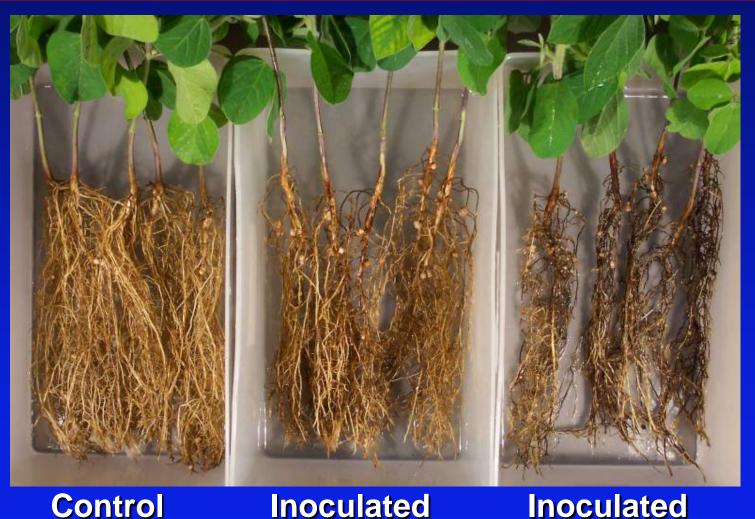
Take-all of wheat after glyphosate to RR beans

After No glyphosate glyphosate

Transient Mn immobilization In tissue with glyphosate


Soybean herbicide plots

Wheat after soybeans


After No glyphosate glyphosate

Corynespora Root Rot of Soybeans

- Caused by Corynespora cassiicola
 Dark brown to black rotted small lateral roots & hypocotyl
- Generally considered "root nibbler" limited economics
- Can be severe & also as a foliage pathogen (target spot)

Predisposing Effect of Glyphosate on **Corynespora Root Rot of Soybean**

Control

Inoculated + foliar glyphosate Effect of Glyphosate from Root Exudates
Stunted soybean plants adjacent to glyphosate-killed giant ragweed plants
Very severe Corynespora root rot
Dead ragweed is not a host for Corynespora

awav

Citrus Variegated Chlorosis Predisposition to CVC (*Xylella fastidiosa*) by glyphosate

Tissue nutrients

9.0 mg kg⁻¹ DW

57.3 mg kg-1 DW

After T. Yamada

Mn:

Zn:

12.3

13.3

Fusarium Head Scab and Root Rot

Caused by Fusarium graminearum & other F.
 spp.

- Soilborne fungi
- Stimulated by glyphosate

Disease "requires" three "cardinal" conditions

- Flowering (center of head outwards)
- Moisture
- Temperature > 26 C

Temperature changes C:N ratio (physiology)

Glyphosate induces similar changes (Mn, Fe, etc.)

- New "Cardinal" conditions:
 - Flowering
 - Moisture
 - Previously applied glyphosate

These shownes also offerst must far (includence)

Predisposition of Bean to Root Rot

Non-nodulating isolines of beans are more resistant to root rot

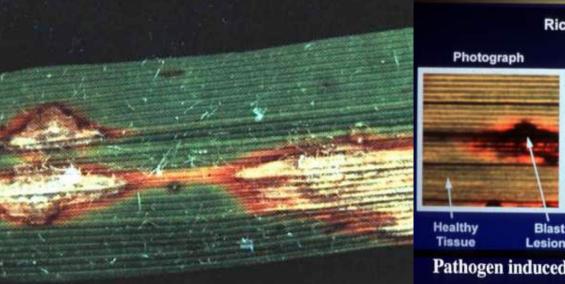
 Glyphosate reduces nodulation and increases root rot

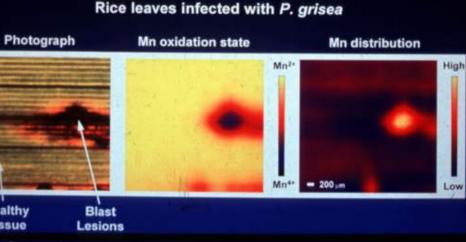
 Glyphosate increases manganese deficiency

Manganese and N deficiency

<u>After</u> Burndown

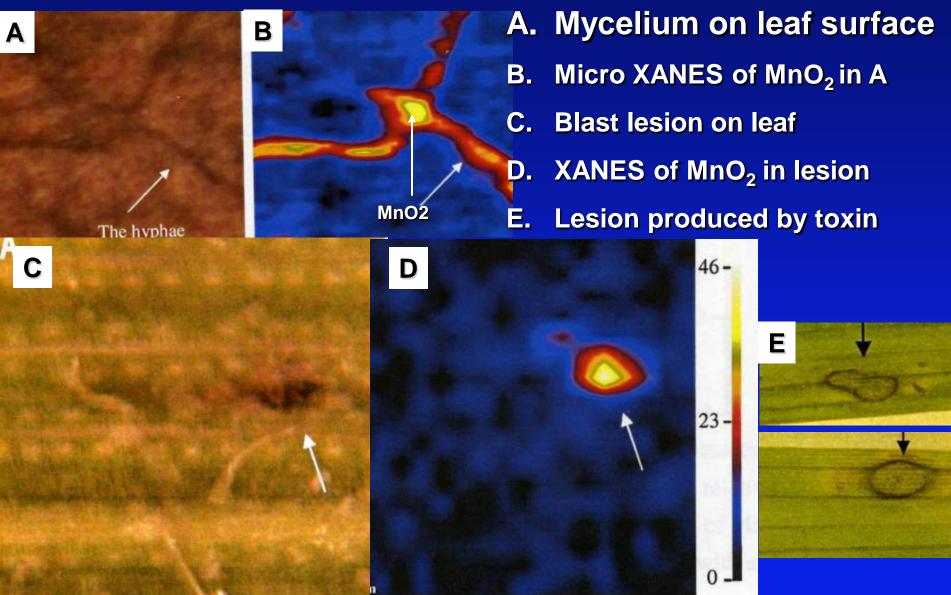
RR corn


Manganese "Forms" in Blast Infected Rice



Rice blast, caused by *Pyricularia grisea* (*Magnaporthe grisea*)

Only oxidized Mn in lesion area


Manganese in Rice Blast Lesions

Pathogen induced Mn deficiency in the infection court

Magnaporthe grisea is a strong <u>Mn oxidizer</u>

Glyphosate is Reported to Control Rust Diseases

Increases resistance

 Specific N nutrients withheld
 Glycine, phenylalanine, etc.

Amino acid inhibitors increased

Provides a 20-25 day effect

Blocks specific peptidase activity

 May account for the more limited damage from soybean rust than anticipated in the U.S.

Mechanisms by which Nutrients Reduce Disease

- Increased Plant Resistance
 - Physiology phytoalexin, CHO, phenolic production
 - Defense- callus, lignituber, cicatrix formation

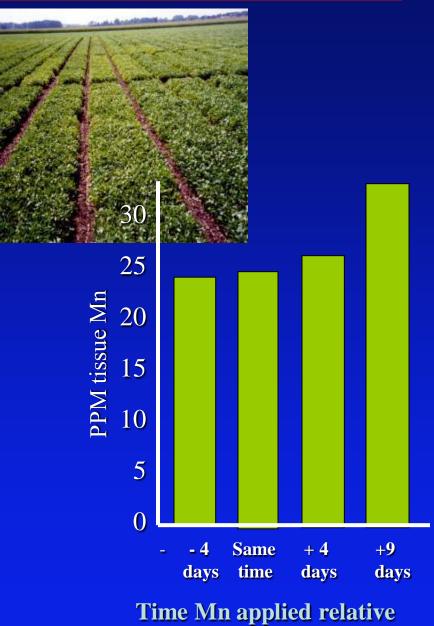
Disease Escape, Increased Plant Tolerance

- Increased growth roots, leaves
- Shortened Susceptible stage
- Compensation for disease damage

Modifying the environment

- pH, other nutrients
- Rhizosphere interactions, nitrification, biological balance

Inhibited Pathogen Activity


- Reduced virulence
- Direct effect on survival and multiplication
- Biological control

Strategies to Reduce Mn Immobilization

Amendment Micronutrient

Timing/formulation Biological amendment Bacillus, Trichoderma

Detoxification **Calcium chelation - gypsum** Manganese Cultural practices **Increase Mn availability Ammonium sources of N Inhibit** nitrification **Crop sequence - after corn Alternative weed control Mulch Reduce usage - chemistry Reduce rates**

to glyphosate (UltraMax®)

Interaction of Micronutrients with Glyphosate*

Micronutrient	Rate	Yield	% Weed control
Untreated control	None	46 a	0 a
Glyphosate** control	24 oz/a	57 b	100 e
Gly+MnCO3	0.5 #Mn/a	75 d	91 de
Gly+MnSO4	0.5 #Mn/a	70 cd	93 e
Gly+MnEDTA	0.25 #Mn/a	72 cd	100 e
Gly+Mn-AA	0.25 #Mn/a	67 c	85 d
Gly+ZnO	0.5 #Zn/a	49 ab	33 c
Gly+ZnChelate	0.25 #Zn/a	40 a	40 c
Gly+Zn+P	0.5 #Zn/a	41 a	20 b

* Glyphosate WeatherMax® formulation at 24 oz/a + AMS

Biological Amendments to Increase Mn

Microbes: Bacillus (cereus), Trichoderma (konigii) Concerns (other than Mn activity): <u>Tolerance of glyphosate</u> Timing Method of application Formulation Safety

	<u>Corn yield (bu/a)</u>		
Treatment	Rainfed	Irrigated	
None	176a	186a	
Bio # 1	181ab	187 a	
Bio # 2	185b	186a	

Detoxifying Glyphosate

In meristematic/reproductive tissues Mn, Si+Mn, Mn+Cu foliar fertilization

In root exudates in soil

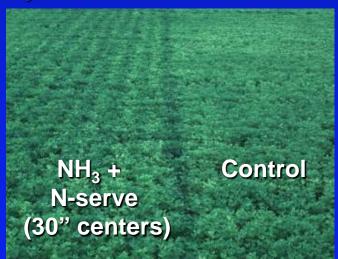
Approach: Broadcast:

> Lime Gypsum Phosphorus In furrow treatment: Gypsum (CaSO4) Lime Manganese Ca + Mn

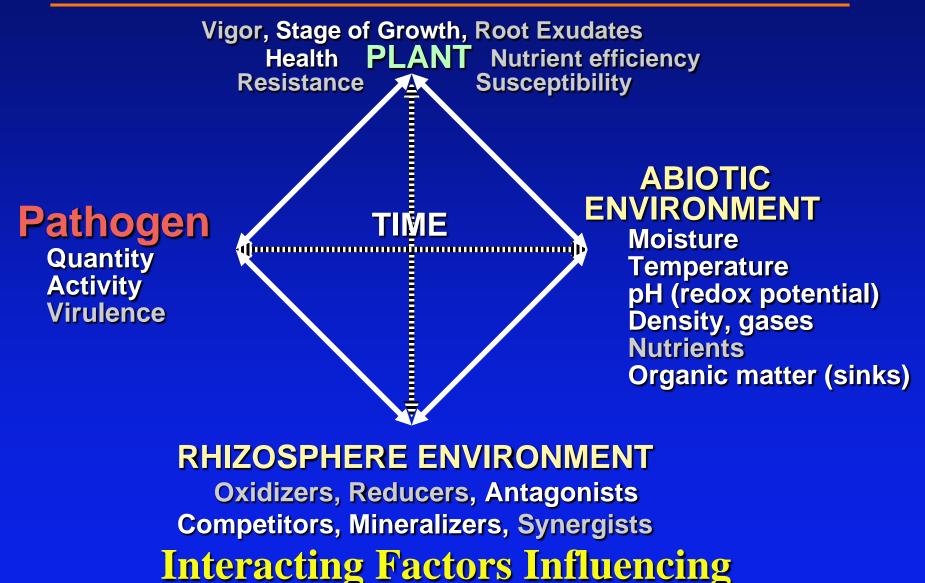
Effect of in-furrow treatments				
<u>on Soybean tissue Mn</u>				
Treatment	Rainfed	Irrigated		
Lime	32a	29a		
Gypsum	38b	36b		

Modify Cultural Practices to Affect Mn Availability

Crop sequence


- Firm seedbed
- Grass mulch
- Lower pH
- Moisture management

Ammonium N inhibiting nitrification


Residual effect of NH₃ for corn on Mn availability for soybean*

Treatment	Tissue Mn	Bean Yld (bu/a)
None	12.1	22
NH ₃ only	14.3	26
NH ₃ +Mn		39
NH ₃ +NI	30.1	44
NH ₃ +NI+Mn		44

*NH₃ on 15" centers

GLYPHOSATE: A simple Compound with **Profound Effects on Nutrients & Disease**

Summary of Glyphosate Effects

- Physiology of the plant
 - Nutrient composition
 - Inorganic micronutrients
 - Organic N compounds (amino acids, etc.)
 - Nutrient efficiency
 - Defense compounds
- Environment
 - Nutrient availability, form, uptake
 - Rhizosphere microbial activity and balance
- Pathogen
 - Virulence, biological synergy

Conclusions & Recommendations

- **1.** The glyphosate-resistance gene selectively reduces Mn uptake Select cultivars with highest Mn efficiency
- 2. Application of glyphosate reduces Mn translocation in tissues Apply micronutrients 8+ days after glyphosate
- **3.** Glyphosate formulation and nutrient source influence uptake Select formulations that are compatible for uptake
- **4.** Changes in rhizosphere biology are accumulative Use cultural practices that minimize glyphosate impact Use a non-systemic herbicide
- **5.** Glyphosate reduces root growth *Detoxify glyphosate in roots and rhizosphere*
- **6.** Severity of some diseases increase with glyphosate Use alternate weed control -Minimize glyphosate use