

1982-2007

Advancing Agriculture Through Research & Education

FOUNDATION

25 YEARS OF PROGRESS

1982-2007

RESEARCH AND EDUCATION

FOR THE EFFICIENT AND PROFITABLE USE OF FLUIDS

WHAT IS THE FLUID FERTILIZER FOUNDATION (FFF)?

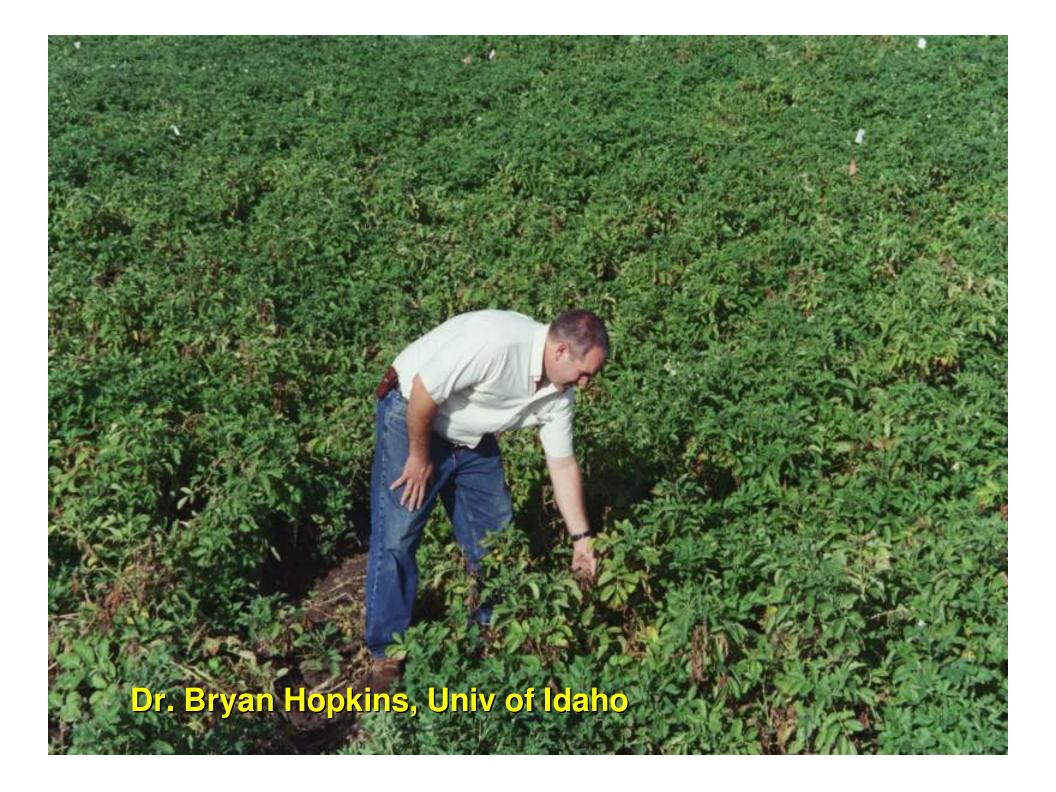
- The research and education arm of the fluid industry, a tax deductible Foundation.
- Founded in 1982 by the National Fertilizer Solutions Association.
- Supported entirely by dealers, distributors and manufacturers of fluid fertilizers and equipment.
- No employees.
- Run by and for the industry.
- The driving force in fluid market development.

WHAT FFF DOES

- The only industry organization providing educational programs exclusively in support of fluid marketing, agronomics and technology.
- Provides direct support for applied research with fluid fertilizers.
- Publishes the quarterly "Fluid Journal", taking information directly to dealers.

WHAT FFF DOES

- Archives information on fluid formulation procedures.
- Publishes the Fluid Manual, the authority on fluid fertilizers.
- Provides sales support information directly to the industry through the Foundation website www.fluidfertilizer.com
- Organizes and presents the annual Fluid Forum, an annual review of all FFF research projects and topics of broad interest to the industry.


RESEARCH AND EDUCATION COMMITTEE

 Recommends all research and education projects to Board

- A unique resource for the industry, all industry personnel
- Plans Fluid Forum, Fluid Schools, Fluid Roundup programs

THE PRODUCTIVITY OF THE FOUNDATION **OUR PROJECT LEADERS! PROJECTS IN CANADA**, AUSTRALIA, USA, MEXICO, ENGLAND The future: Brazil? Argentina? Germany?

Dr. Cynthia Grant, Ag Canada

Dr. Mark Alley, Virginia Tech Univ;

Dr. Ardell Halvorson, USDA-ARS

Dr. Bob Holloway, South Australia RDI

Dr. Barney Gordon, Kansas State Univ.

対抗な

RESEARCH IN ACTION

Twin Diamond Industry

....Some men farm for profit.... Some men farm for color!

FLUIDS IN ACTION

FFF EDUCATIONAL PROGRAMS

Fluid Journal ...the flagship of FFF ...articles written for direct use by dealers with their customers 57th issue on the way FFF Website www.fluidfertilizer.com ...a tremendous resource, download FJ articles, order materials

FFF EDUCATIONAL PROGRAMS Unique in the Industry **Fluid Fertilizer Schools** 16 since 2001, mainly agronomics, some technology, more requested Fluid Technology Roundup 2005, 2006, Dec. 10-12, 2007 Mainly fluid technology, some agronomy..very popular

FFF EDUCATIONAL PROGRAMS

 Educational projects
 Fluid Banding Review – a broad
 review of fluid banding. Source of
 articles, future publications
 Fluid Programs for Individual Crops
 – Best Management Practices for fluid
 use in crop production, referenced

LOOKING AHEAD The Next 25 Years

- Research and education needs remain
- Opportunities:
 Improved nutrient use efficiency Greater returns on investments
 Training industry personnel
 Distribution of information
- Challenges:

Continuing industry consolidation Continuing erosion of applied research support Training of students in applied agronomic sciences Reduced tillage New emphasis on starters MANY FACTORS INFLUENCE CROP RESPONSES TO STARTERS BESIDES SOIL TEST VALUES

> Large amounts of residues Cold soils Compaction Genetics

IN HIGH RESIDUE SYSTEMS, USE OF STARTER SHOULD BE A MANAGEMENT DECISION, UP FRONT, REGARDLESS OF SOIL TEST VALUES

NPKS Starter Fertilizer Rates and Placement for Corn Gyles Randall and Jeff Vetsch Southern Research and Outreach Center Univ. of Minnesota

http://sroc.coafes.umn.edu

NPKS Starter Fertilizers

- Objectives:
 - Determine the effect of various combinations and rates of N, P, K, and S starter fertilizers on corn production and profitability on high P and K testing soils.
 - Evaluate starter placement positions for NPKS fluid fertilizers for corn.

Experimental Procedures

- Location: SROC, Waseca
- Soil type: 2004 Nicollet clay loam
 2005 Nicollet / Webster
- STP: Bray P₁ (ppm): 2004 28 (VH)
 - 2005 26 (VH)
 - 2006 19 (H)
- Planting date: 2004 May 4
 2005 May 3
 2005 April 27

NPKS sources

Nutrient

Sources

N P₂O₅ K₂O S

UAN, plus 10-34-0, 7-21-7 KTS, 0-0-25-17 ATS, 12-0-0-26

Placements

- 1. None
- 2. Pop-up (in-row, with seed)
- 3. 5 x 5 (inject 5 cm deep and 5 cm from seed)
- 4. 5 x 0 (dribble on soil surface 5 cm from seed row)

NPKS starter and placement effects on corn grain yield (MN, 2006)

	Placement		
NPKS Rate	2 x 0"	2 x 2"	
lb/A	Bu/A		
0+0+0+0	209		
6+20+0+0, pop-up	215		
6+20+6+4, pop-up	215		
20+20+6+4	233	221	
20+20+0+4	216	229	
20+20+6+0	206	208	
20+20+10+10	231	224	
40+40+10+10	226		
LSD (0.10):		2	6
		1.0	

NPKS Summary			
Effects of NPKS starter PLACEMENT on yield.			
Fluid NPKS	Fluid NPKS 3-Yr Avg.		
Placement ^{1/}	<u>1/</u> Corn Yield		
	bu/A		
2" x 0"	196		
2" x 2"	2" x 2" 195		
LSD (0.10) =	NS		
LOD(0.10) =			
$\frac{1}{2}$ Averaged across 4 NPKS rates of application.			

NPKS Summary

- Early growth (V6) was increased by the starter treatments in all years. 3-Yr average weight responses ranged from about 35% for the 2" x 0" and 2" x 2" placements to about 70% for "pop-up" placement.
- Concentrations of N, P and K in the small plants were generally NOT affected by the starter rates and placements.
- Sulfur concentrations were affected by the starter rates but were not affected by placement.
- N, P, K and S uptake was increased by starter rate but was not affected by placement.

NPKS Summary

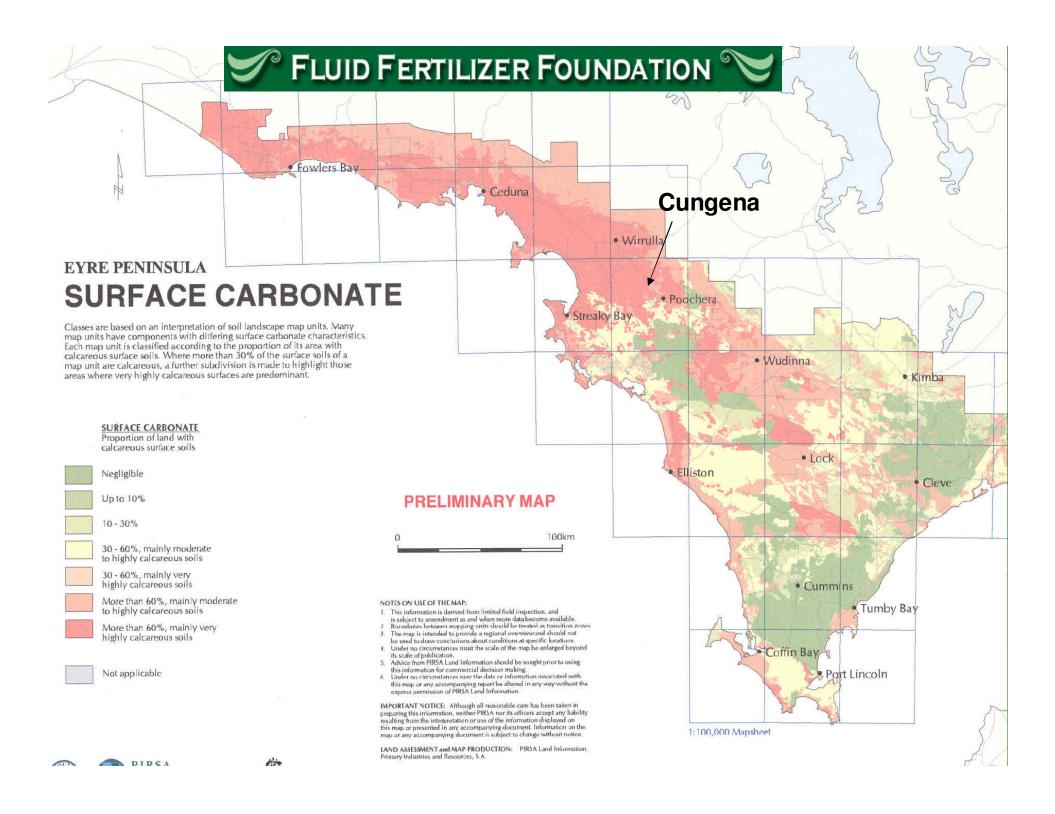
 Grain yield was significantly increased above the no starter control by all NPKS starter treatments except those that did NOT contain S and the 6 + 20 + 6 + 4 "pop-up" placement

- 30% stand reduction one year

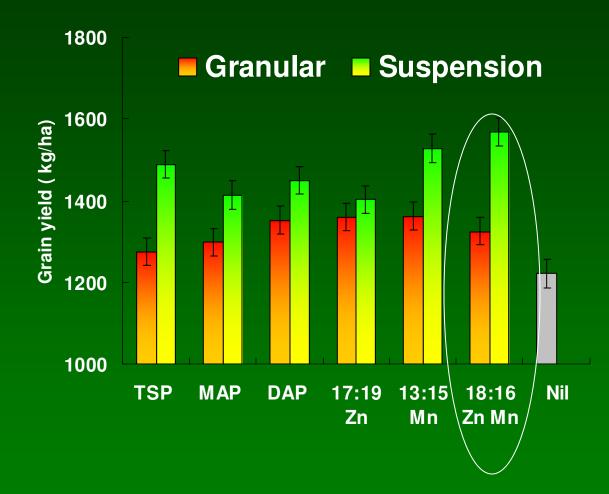
Applying higher rates of N and P (40 + 40 vs. 20 + 20) did not increase grain yield or profitability

NPKS CONCLUSIONS

- Low amounts of fluid NPKS starter fertilizers gave consistent economic corn yield responses on these HIGH P-testing soils.
- Starter fertilizer placement (2x2" or 2x0") did not affect yield response.
- Sulfur included in the starter consistently increased corn yield.



FLUID FERTILIZER FOUNDATION CONTROL IN THE SECTION OF THE SECTION


Bob Holloway Dot Brace lan Richter Ganga Hettiarachchi Mike McLaughlin Thérèse McBeath Enzo Lombi Caroline Johnston

Roger Armstrong

CUNGENA 2004

Micronutrient Trial 2005

2 sites

CUNGENA

Grey highly calcareous sandy loam

Calcium carbonate 35%

GSR 234 mm

PORT KENNY

Grey highly calcareous sandy loam Calcium carbonate 54%

GSR 351 mm

SFLUID FERTILIZER FOUNDATION 📎

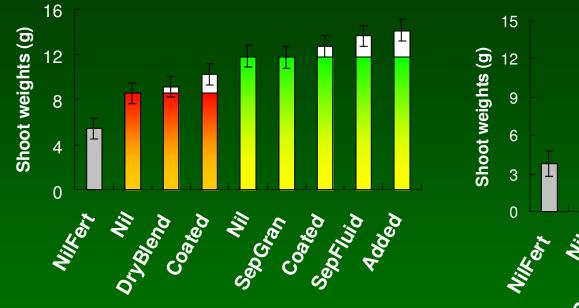
Site	Ν	Ρ	Zn	Mn
CUNGENA	15	10	1	2.5
PORT KENNY	25	10	1	2.5

All suspensions were made using DAP based granular products mixed with clay & sulphuric acid

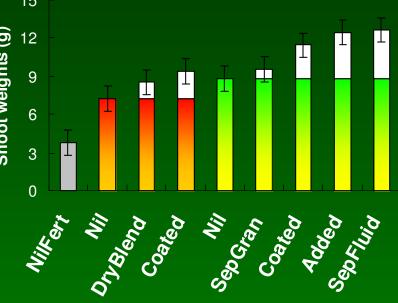
John Blue® Squeeze pump @ 170 L/ha

Yitpi Wheat @ 60 kg/ha Sowing dates 21/06 & 24/06

FLUID FERTILIZER FOUNDATION


 \checkmark

FERTILISER	MICRONUTRIENT APPLICATION	PRODUCT
Granular	Nil	DAP
Granular	Dry Blend	DAP with Zn Mn Granules
Granular	Coated	19:13 Zn 1.2 Mn 3.3
Suspension	Nil	DAP into suspension
Suspension	Sep Granular	DAP into suspension with Zn Mn granules applied separately
Suspension	Sep Fluid	DAP into suspension with Zn Mn clear fluid applied separately
Suspension	Added	DAP with Zn Mn granules into suspension
Suspension	Coated	19: Zn 1.2 Mn 3.3 (coated granular product) into suspension
Nil fertiliser		

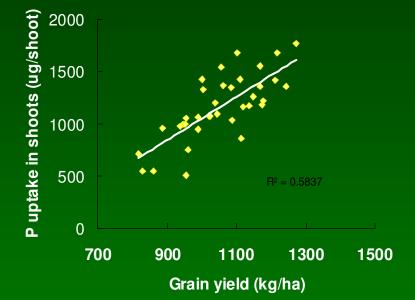

FLUID FERHLIZER FOUNDATION

CUNGENA 2005

PORT KENNY 2005

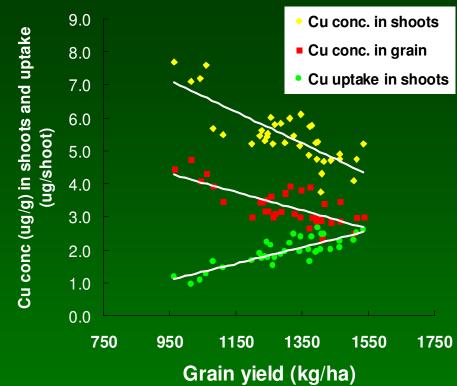


Micronutrient Applications



Micronutrient Applications

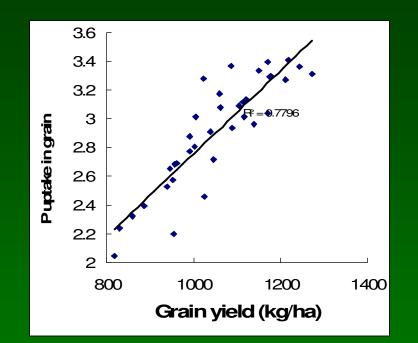
CUNGENA 2005



Micronutrient Application

Micronutrient Applications

P uptake (ug/shoot)

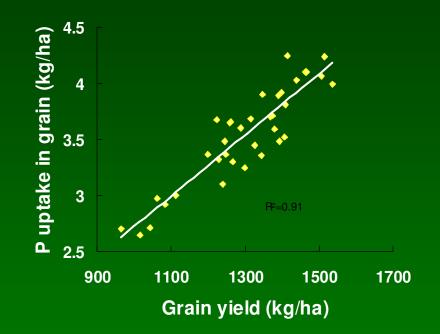


PORT KENNY 2005

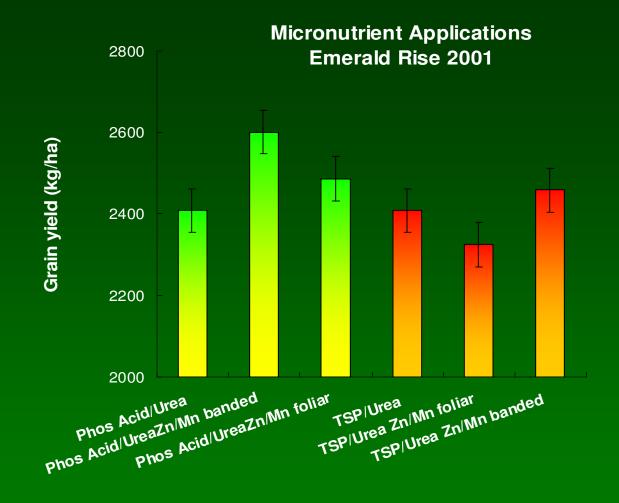
FLOIDFERHLIZERFOUNDATION

1500 Grain Yield (kg/ha) 1200 ΤI Τ 900 Π 600 Nilfer Dryblend Coated Septivid Septivid Septivid


Micronutrient Applications


CUNGENA 2005

FLOID FERHLIZER FOUNDATION


PORT KENNY 2005

Micronutrient Applications

FLOID FERHLIZER FOUNDATION

SUMMARY

- Fluids have some unique features for crop production
- Fluids are particularly adapted for specific placement—starters
- Fluids provide flexibility in placement and methods of application
- Uniform distribution of micronutrients in fluids can be a significant advantage