Tecnologias emergentes para os fertilizantes fosfatados

Terry A. Tindall Ph.D.

J.R. Simplot Company

Boise ID USA

NEW METHODS FOR INFLUENCING PHOSPHATE AVAILABILITY TO PLANTS

Common Objective...

Treat Microenvironments, Not Entire Soil Mass, to Improve Effectiveness

Phosphate becomes tied-up, or fixed

On low pH soils

- Aluminum
- ·lron

On high pH soils

- Calcium
- Magnesium

PHOSPHORUS FERTILIZERS THE PROBLEM

- Crop recovery limited to 5 25% of applied P fertilizer during the season of application (Mortvedt, 1994).
- At high pH, P is fixed by Ca and Mg.
- At low pH, P is fixed by Fe and Al.

MODIFICATION OF MICROENVIRONMENTS RELATIVE TO P AVAILABILITY

- Banding of P
- Dual banding of ammonium N and P
- Injection of P fertilizers--fertigation

WE'VE UNDERSTOOD THE VALUE OF PREPLANT BANDING OF N AND P FOR **OVER 30 YEARS**

PRODUCT:

AVAIL

Specialty Fertilizer Products and J.R. Simplot

WHAT IS AVAIL?

- One of a patented family of dicarboxylic copolymers.
- Used as a coating on granular phosphates or mixed into fluid P fertilizers to enhance P availability.

AVAIL Polymer Chain

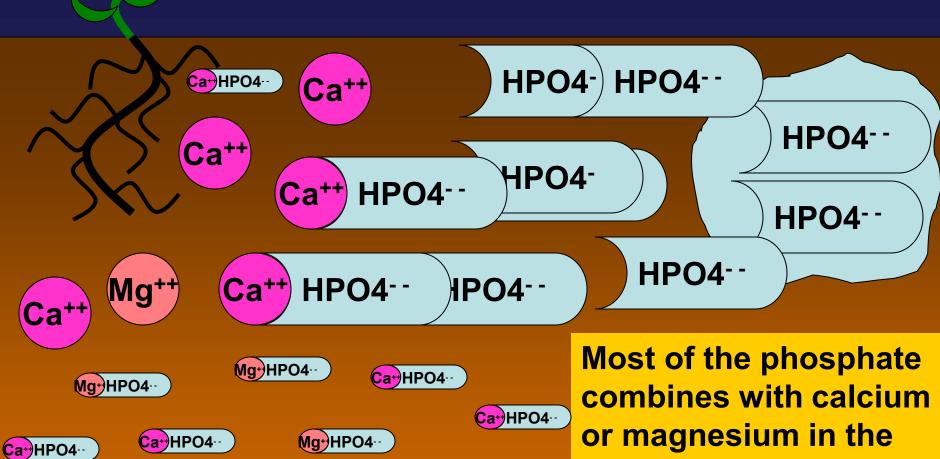
AVAIL CHARACTERISTICS

- An extremely high cation exchange capacity

 approximately 1800 milliequivalents /100
 gms.
- Polymeric structure is very specific to attracting and adsorbing multivalent cations.
- Functionality is not affected by pH, temperature ranges.
- Biodegradable and water soluble.

Soil Phosphate

- 95% of the phosphorus in the soil is tied up as insoluble compounds and is unavailable for use by the plant.
- Added fertilizer phosphate is quickly converted to insoluble forms (usually calcium or Al phosphate)


Ca+HPO4-

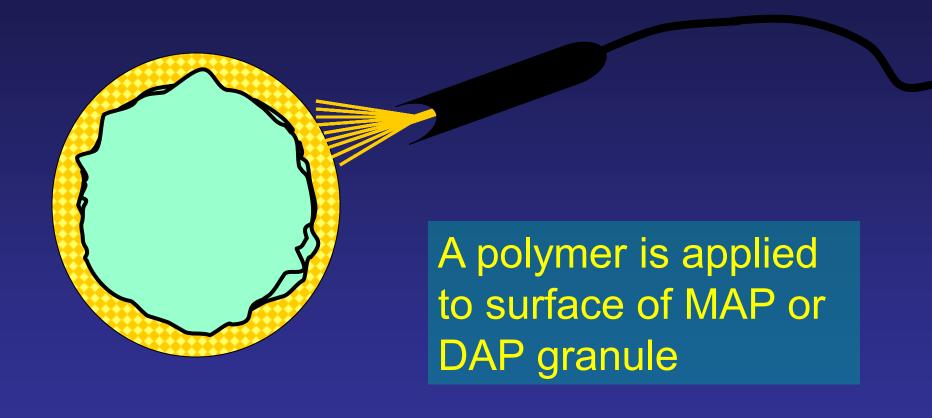
Ca++)HPO4--

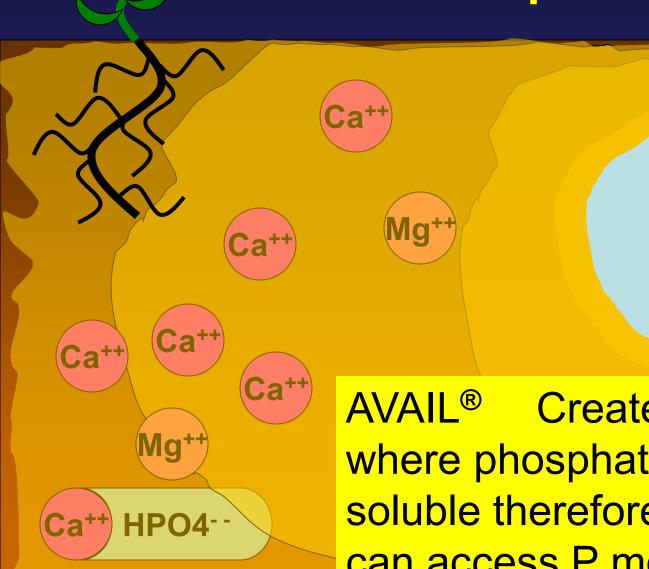
Mg+HPO4-

Ca++HPO4--

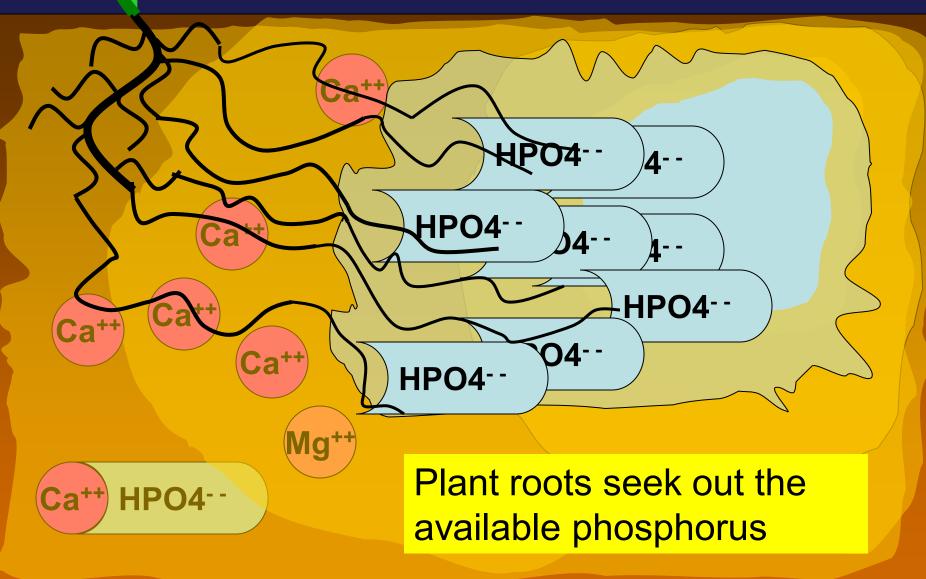
Regular Phosphate

HPO4--


soil and is unavailable for plant uptake.

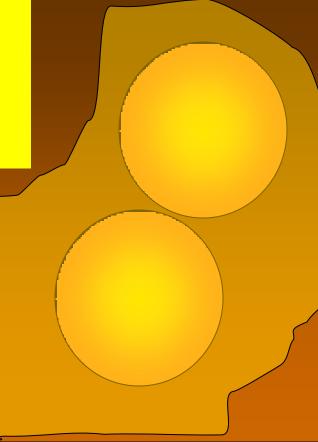


AVAIL® Phosphate Enhancer



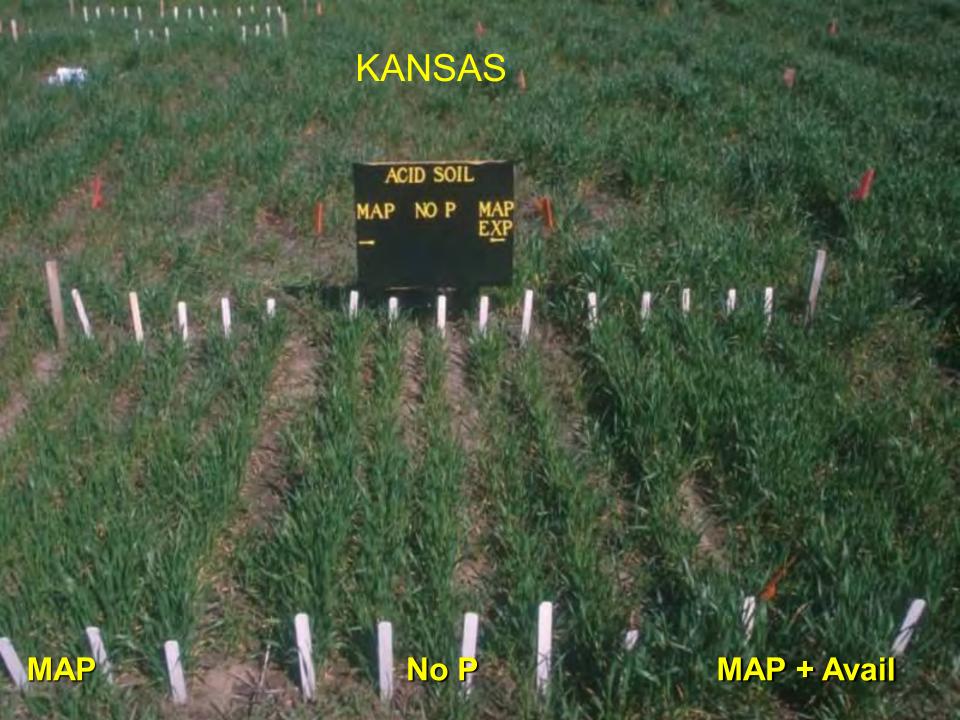
AVAIL® Polymer Coated **Phosphate**

AVAIL® Creates a zone where phosphate remains soluble therefore plant roots can access P more freely.


AVAIL® Polymer Coated Phosphate

AVAIL® Phosphate Enhancer

Phosphate for the 21st Century


AVAIL® Creates a zone where phosphate remains soluble resulting in higher P uptake!

WHAT IS THE MODE OF ACTION?

Mode of Action Theory

- Polymer sequesters antagonistic cations out of soil solution around P fertilizer granule.
- P remains unfixed and available for plant uptake.
- Results in highly concentrated zones of available P for the plants (microenvironments).

WHEAT RESPONSE TO ENHANCED P AVAILABILITY Kansas

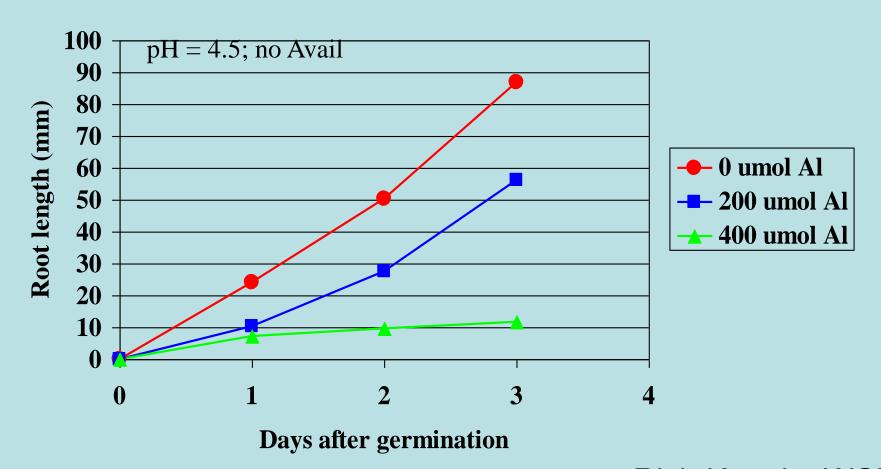
Treatment Applied	Grain Yield bu/A
Control	31.6
MAP	34.2
MAP + polymer	39.5

1% polymer Murphy Agro – Kansas State Univ. 20 lb P₂O₅/A banded at planting. Soil pH 4.7

POLYMER AND P APPLICATION METHOD EFFECTS ON WHEAT Arkansas

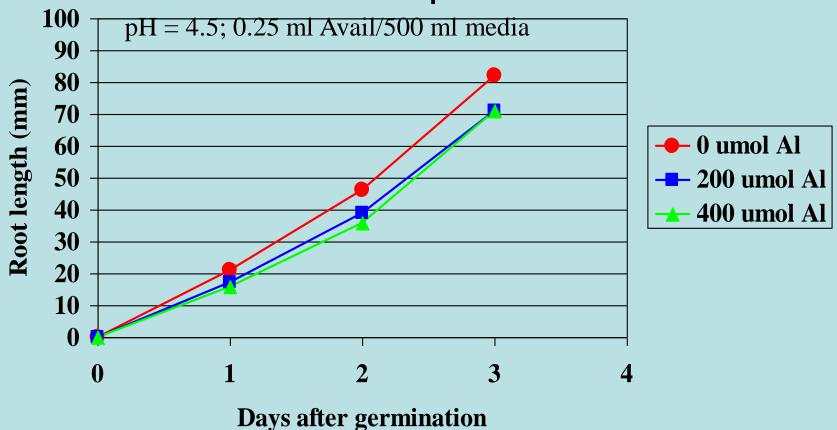
	Yield	
Treatment	bu/A	
Control	46.7	
MAP banded	54.7	
MAP + polymer, banded	76.9	
MAP broadcast	58.2	
MAP + polymer, broadcast	65.6	
MAP + seed, broadcast	55.1	
Map + polymer + seed, broadcast	68.3	
LSD (0.10)	7.5	

30 lb P_2O_5/A . Soil P test low. Soil pH=7.6.


Palmer, Univ. of Arkansas

AVAIL EFFECTS ON ALUMINUM TOXICITY TO WHEAT SEEDLINGS

Dr. Rich Koenig, Washington State Univ.


- * Screening test for wheat varieties
- * Various concentrations of Al
- * Included Avail polymer as a variable

ALUMINUM EFFECTS ON WHEAT GROWTH Low pH

Rich Koenig, WSU

ALUMINUM EFFECTS ON WHEAT IN PRESENCE OF AVAIL POLYMER Low pH

Rich Koenig, WSU

Dr. KOENIG'S WORK SUPPORTS THEORY OF AVAIL EFFECTS ON P FIXING CATIONS

 Polymer lowers the activity of multivalent cations in solution.

Spring Wheat – University of Idaho '06 SSP/MAP - Preplant Broadcast S/E Idaho, Soil pH 8.1

+\$4.00/A

+\$8.00/A

+\$16.00/A

	Bu. / Acre*	Avail ROI/A
MAP - 40	91	
MAP + Avail	97	+\$24.00
MAP - 80	96	
MAP + Avail	102	+\$27.00
MAP - 160	94	
MAP + Avail	98	+\$18.00

CORN

CORN RESPONSE TO ENHANCED P AVAILABILITY Missouri

Treatment	Grain Yield bu/A	
Control, no P	135	
MAP broadcast	132	
MAP + polymer broadcast	151	
MAP banded	132	
MAP + polymer banded	157	
LSD (0.10)	13	

1% polymer coating

20 lb P₂O₅/A Soil test Bray P-1: 7 ppm

Dale Blevins, Univ. of Missouri

pH: 5.9

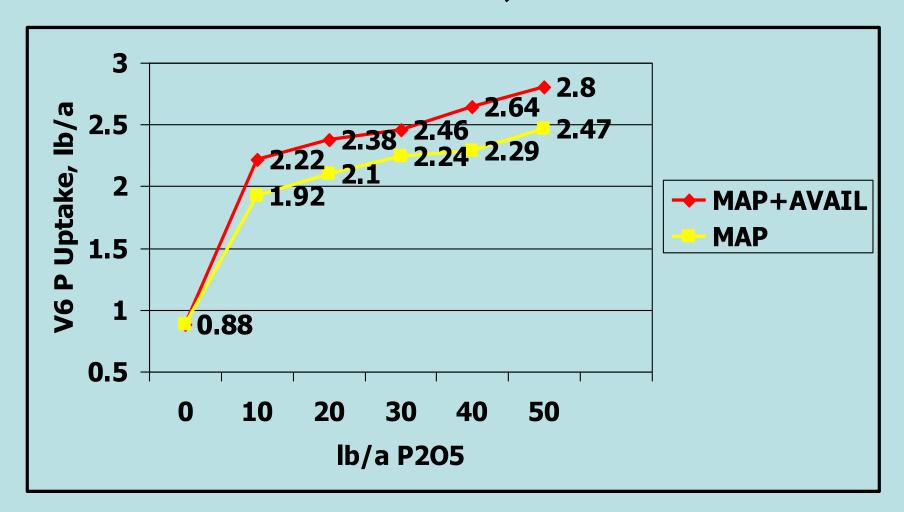
ENHANCING P AVAILABILITY FOR CORN Minnesota

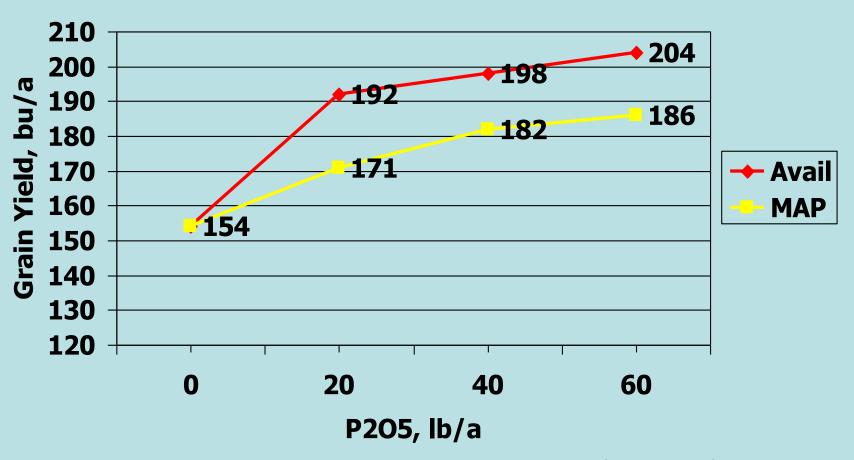
P Source	P Uptake V-6	Yield
Ib P ₂ O ₅ /A	g/12 plants	bu/A
0	1.85	136
25 DAP	1.77	151
25 DAP + polymer	2.72	172
50 DAP	2.17	155
50 DAP + polymer	2.47	175
LSD (0.10)	0.71	18

P broadcast, 0.25 % polymer coating.

Soil pH: 7.3 Soil test P: 7 ppm Olsen.

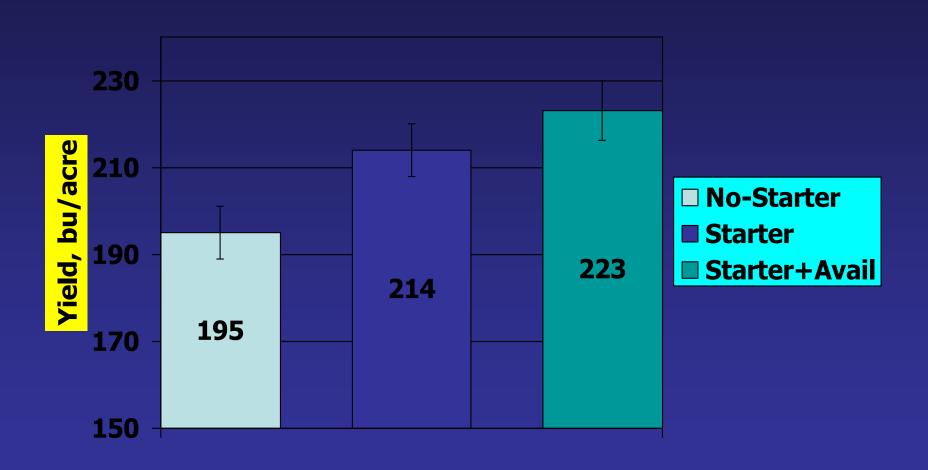
Randall, Univ. of Minnesota


Tom Haigh—JRS Kansas and Dr. Barney Gordon KSU


Kansas State University NorthCentral R&D Center--2006

KSU, North Central Exp. Field NO Avail **Avail Polymer**

V6 Whole Plant P Uptake, 2004 Scandia, KS



Avail Effects on Corn Grain Yield 2001-2003 Kansas

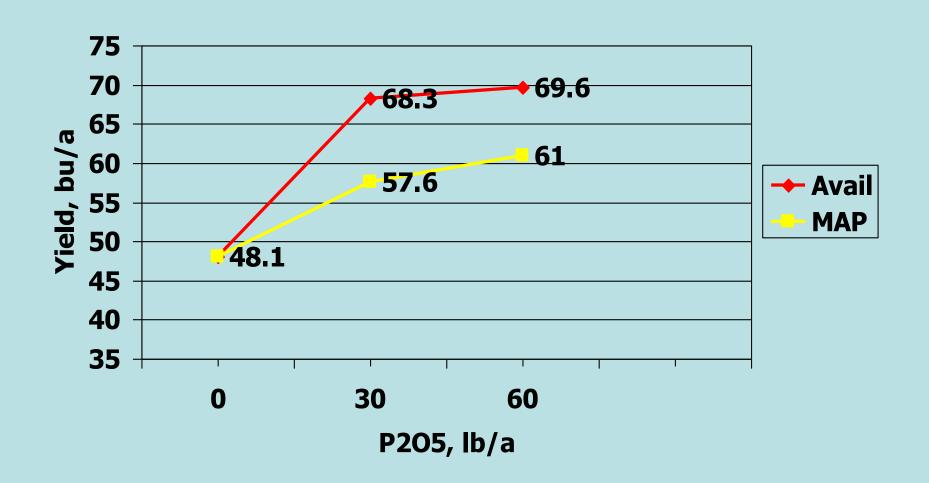
Barney Gordon, KSU

Corn Yield as affected by Avail in Liquid Starter Fertilizer 2003-2005

STUDIES WITH SOYBEANS

ENHANCING P AVAILABILITY FOR IRRIGATED SOYBEANS Kansas

Treatments Ib P ₂ O ₅ /A	2002 Grain Yield bu/A	2003 Grain Yield bu/A
Control	52d	 32d
30 MAP	62c	41c
30 MAP + polymer	70b	57a
60 MAP	62c	47b
60 MAP + polymer	73a	58a


Duncan's multiple range test, 5%.

Gordon, Kansas State Univ.

P broadcast preplant. Soil test P: 38 ppm Bray 1. Soil pH: 6.8.

0.25% polymer.

Avail Soybean Grain Yield 2002-2004

AVAIL POLYMER EFFECTS ON SOYBEANS Missouri – 2005

Treatments Ib P ₂ O ₅ /A	P %	P Uptake Ib/A	Yield
Ib P ₂ O ₅ /A bu/A			
0	0.250	2.62	51
50	0.265	3.75	52
50 + Avail	0.315	4.95	56
LSD _{.10}	0.048	0.78	2

P applied pre-plant. Soil pH = 6.0 D. Dunn, Univ. of Missouri

AVAIL EFFECTS ON SOIL TEST P

Missouri - 2005

Treatment	Bray P-1
Ib P ₂ O _{5/} A	lb/A
0	29.5
50	54.0
50 + Avail	73.2
LSD _{.10}	6.7

Soybeans. pH = 6.0

D. Dunn, U. of Missouri

POTATOES and ONIONS

Potato Yield and Return Responses to Enhanced P Availability Idaho

Treatment Applied	Yield CWT/A	Petiole P%	Gross Return
Control	311a	.225d	1456
MAP 60 lb P205/Ac	330ab	.253cd	1546
MAP 120 lb P205/Ac	344bc	.275bc	1591
MAP + Exp 60 lb P2O5/A	339ab	.288ab	1575
MAP + Exp 120 lb P2O5/A	369c	.308a	1791

Calcareous soil, Aberdeen, ID Jeff Stark, University of Idaho

Russet Burbank Potatoes –'06 University of Idaho, SE Idaho Soil pH 8.1 - Preplant Broadcast – SSP/MAP Fall / Spring Applications (Stark)

		Yield /Acre (cwt)**	U.S. # 1	Grower ROI/A (Avail Benefit)
ıe	MAP-100-F	409	281	
	SSP/MAP	449	335	+\$281
	MAP- 200-F	431	318	
	SSP/MAP	445	343	+\$101
	MAP- 100-S	407	283	
	SSP/MAP	438	328	+\$218
	MAP- 200-S	417	284	
	SSP/MAP	414	309	+\$33

Avail Upcharge +\$10.00/A

+\$20.00/A

**\$6.00/cwt

+\$10.00/A

+\$20.00/A

We continue to see positive responses over multiple years for Avail applications with P fertilizers used on potatoes. Avail consistently provides positive yield and improvements in quality.

Dr. Jeff Stark—Univ. of ID--2007

ONIONS

Avail SD applications on furrow irrigated onions

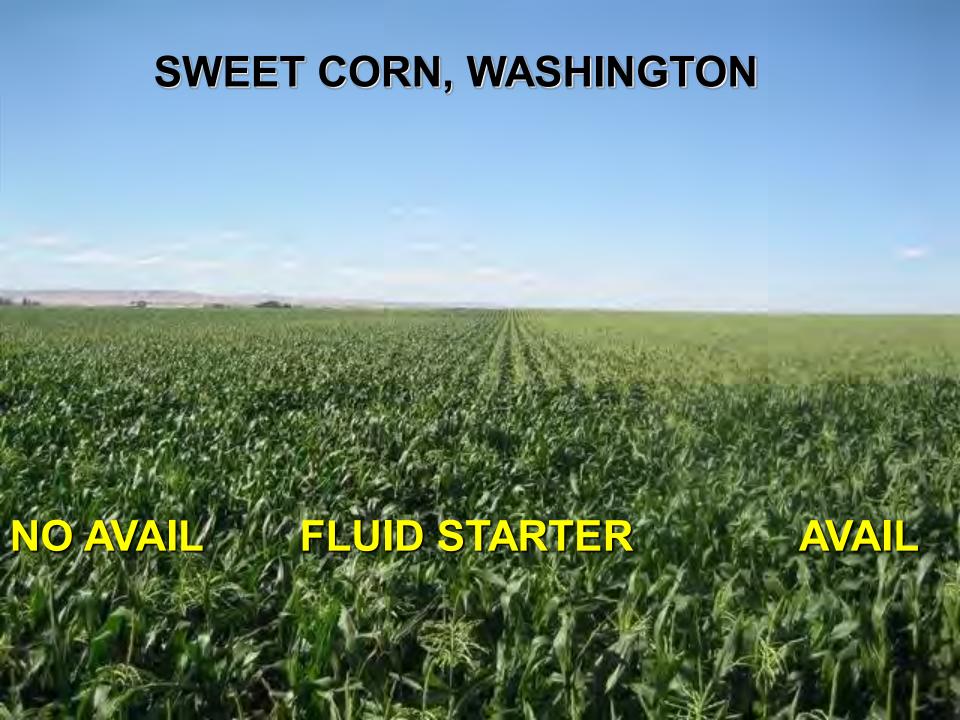
Avail SD applications on drip irrigated onions

 Avail works extremely well to improve P uptake and improves quality and yield!

Crop Advisor Introduction of Avail SD to Growers-2006

Avail SD 1 % 40 lbs/ac

Growers Standard Practice


I needed to prove Avail Technology would work for "my growers". I started slow with no sales in 04 or 05, but had such good results using Avail SD at 1% by volume in 06-that I now recommend Avail on 100% of my grower fields.

Andy Serpa—SGS CCA Treasure Valley ID--2007

"We began to use Avail OS and SD on our onions in 2005—50 acres at the beginning to over 800 acres in 2006, we owe the production increases and improved quality to the Avail applications"

Larry Bouman—L & L Farms
Othello Washington

Avail allows P to be taken up in the plant more rapidly and at higher concentrations speeding up maturity in many plants

AVAIL FOR ALFALFA Scottsbluff, NE

MAP MAP + Avail
Tons/A

Phillips 6.09

7.87

Stricker 5.06

6.60

50 lb P₂O₅/A Olsen P 16-18 ppm 0.25% coating Simplot

Avail SD with 10-34-0 new planting alfalfa in beds

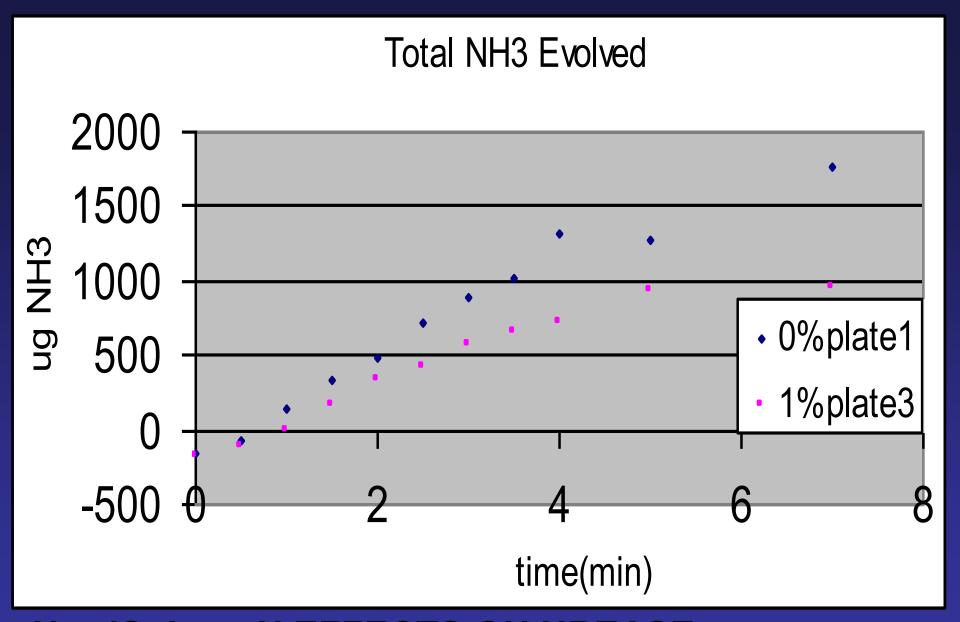
VEGETABLES

I was able to measure an increase in my established alfalfa by using Avail treated MAP in the spring of 06. I was impressed and am now using Avail on sugarbeets, corn, garlic (300 ac) seed alfalfa and wheat (1000 acres)—I am sold on the technology!

John Deaner Red Rock Ranch— Fresno Co. CA

Avail Technology—Bright Hope for Western Growers

Nutrisphere-N Improving N Use Efficiency and Profits


Nutrisphere-N POLYMER

- High charge density like AVAIL
- Not same formulation as AVAIL
- Initial studies looked at effects on ammonia volatilization under lab conditions...successful (Univ. of GA)
- First field study in 2004 in Kansas with coated urea on no-till corn..KSU
- Studies continuing at 15 universities

NutriSphere N

Suggested mode of action:
 Sequestration of bio-available Ni ions in soil around urea particle decreases volatilization.

 Bacterial synthesis involves Cu and Fe for nitrification and appears to be suppressed with NutriSphere N

NutriSphere N EFFECTS ON UREASE

Univ. of Kentucky

NSN and Nitrification

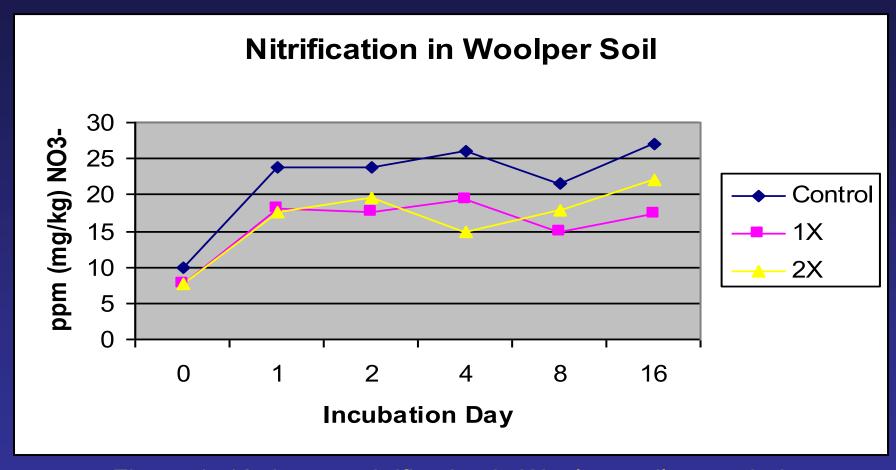


Figure 1. 16-day net nitrification in Woolper soil amended with N-Guard polymer--2006

NUTRISPHERE-N EFFECTS ON UREA PERFORMANCE No-Till Corn---Kansas 2004

Treatment	% N	Corn Yield
lb N/A		bu/A
0	1.77	154
80 Urea	2.00	176
80 + N-GUARD	2.20	198
160 Urea	2.08	192
160 + N-GUARD	2.32	210
240 Urea	2.22	230
240 + N-GUARD	2.46	254

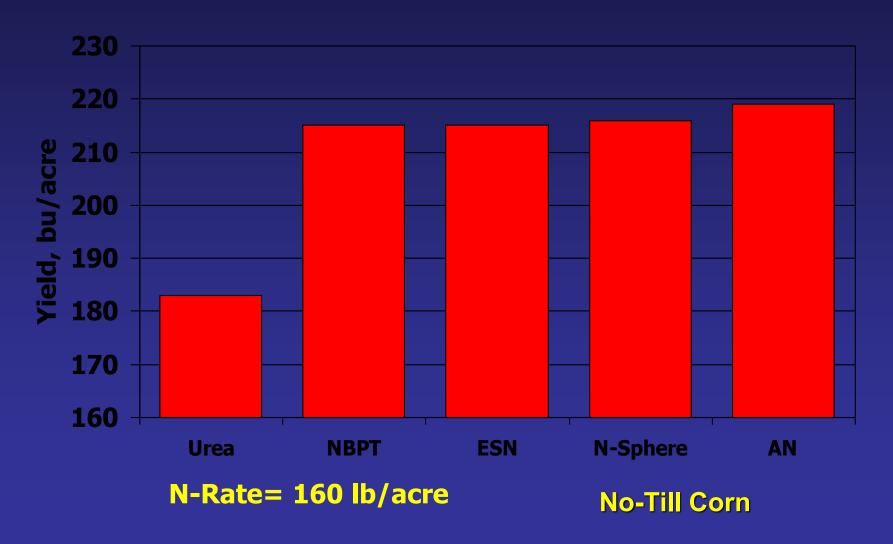
Sidedressed N, 0.5% N-GUARD 2004 Gordon, KSU

HIGH CHARGE DENSITY POLYMER EFFECTS ON UREA

2005-- No-Till Corn, Kansas

N Rate	Ear Leaf N	Corn Yield
Ib/A	%	bu/A
0	1.78	139
80 Urea	2.79	167
80 Urea + N-GUARD	2.90	184
160 Urea	2.90	183
160 Urea + N-GUARD	3.07	216
240 Urea	2.95	192
240 Urea + N-GUARD	3.09	215
LSD .05	0.09	<u>6</u>

Soil pH = 7.0


Gordon, Kansas State Univ.

NSN: 0.25% coating

Tools to Manage N-Losses with Surface Applied N.

- Urease-Inhibitors (NBPT)
- Controlled Release N. Urea granule is coated, but allows water to diffuse across membrane. N-release is then temperature controlled. (ESN).
- Long-Chain liquid Polymer coating of Urea (NutriSphere N).

Corn Yield as Affected by N Source (2-year Average)

N-GUARD EFFECTS IN NITROGEN SOLUTION No-Till Corn--2005

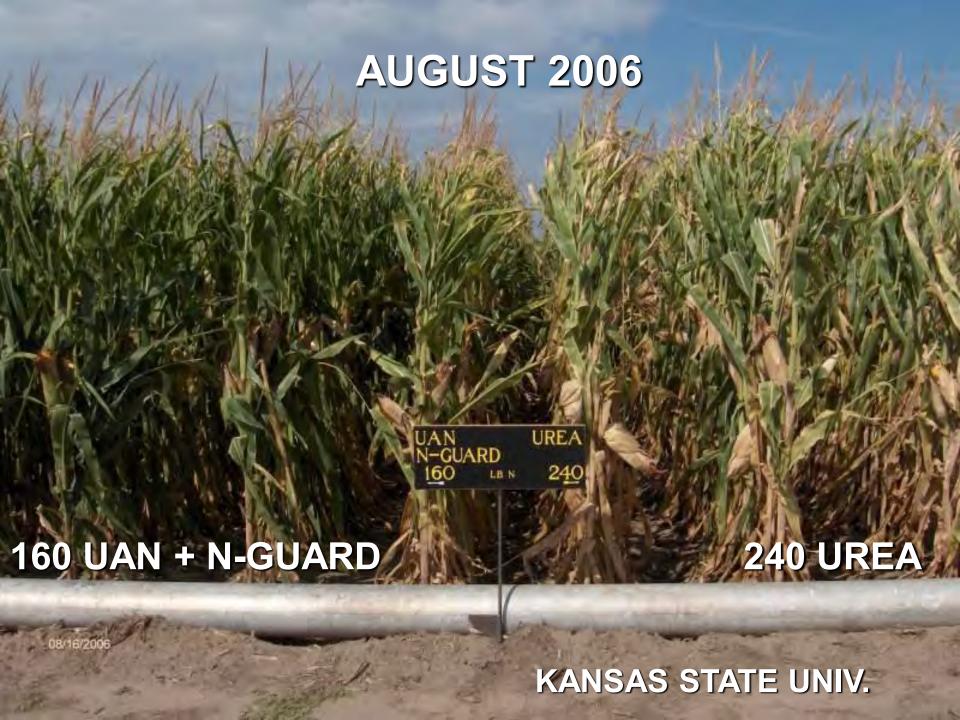
Treatments Ib N/A	Grain Yield bu/A
0	71
90 Banded	104
90 Banded + 1% N-GUARD	131
130 Banded	130
130 Banded + 1% N-GUARD	158

Loam soil

Ron Mulford, Univ. of Maryland

N RATES AND N-GUARD No-Till Corn, Kansas--2006

N Rates	Urea		Urea UAN		N
Ib/A	N-Guard	None	N-Guard	None	
0	138 bu/A				
80	166	152	170	157	
160	188	169	192	167	
<u>240</u>	197	188	196	<u> 181</u>	


All N broadcast

cast Gordon, KSU

Soil pH: 7.0

CURRENT STUDIES

- Kansas State (2)....no-till corn
- Univ. of Kentucky (3)...no-till corn
- Texas A&M....hybrid bermudagrass
- Univ. of Arkansas... bermuda, rice (2)
- Univ. of Missouri...rice, corn
- Univ. of Illinois...no-till corn
- Univ. of Maryland (2)...no-till corn
- Mississippi State...rice
- Ohio State.....corn

UNIV. OF ILLINOIS the company of the second UREA 80 CHECK NGUARD N_GUARD UREA <mark>30 N</mark> (

N-GUARD POLYMER EFFECTS ON NO-TILL CORN YIELDS

Maryland – 2006

Treatments	Corn Yields
Ib N/A	bu/A
80 UAN	138
80 UAN + 1% N-Guard	147
120 UAN	156
120 UAN + 1% N-Guard	166
Mattapeake loam	Mulford, Univ. of MD

DeKalb DKC 63-74

Economics

- Grower costs of Avail is about .08/lb of P2O5
- Grower costs of Avail SD or Avail OS is about \$150.00/gallon and applied at either .5 % or 1.5% by volume.

 Grower cost of NutriSphere is about .08/lb of N above cost of urea.

SUMMARY

- Polymer coatings of P materials have been and continue to be effective
- Slowed solubility a factor in lessening germination damage in sensitive crops
- Delayed P fixation reactions improve P use efficiency
- Cost effective

Opportunities for Brazil

 Develop a better understanding of Avail and NutriSphere responses across Brazilian agriculture production systems.

Work with industry partners to be successful in Brazil

 Provide Brazilian growers with more efficient nutrient management programs.

