

V Simpósio Regional • IPNI Brasil

BOAS PRÁTICAS PARA USO EFICIENTE DE FERTILIZANTES

Rio Verde - GO • 28 e 29 de Maio de 2013

Conceitos e Dinâmica de Nutrientes no Sistema Solo-Planta Visando as BPUFs

Dr. Eros Francisco, Diretor Adjunto IPNI Brasil Dr. Luís Prochnow, Diretor IPNI Brasil Dr. Valter Casarin, Diretor Adjunto IPNI Brasil

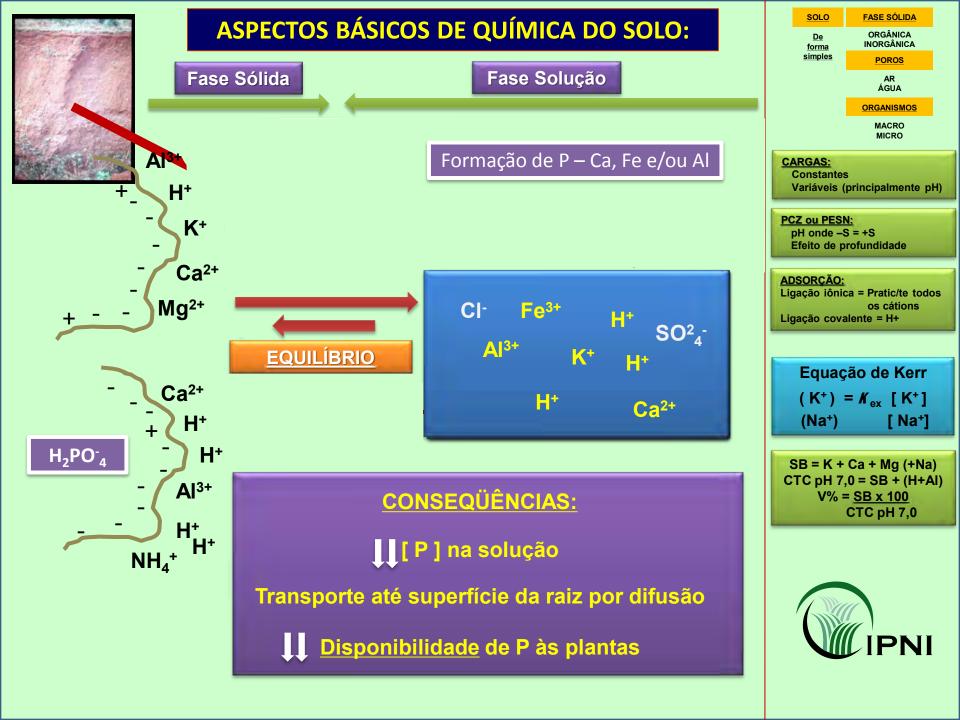
OBJETIVOS PRINCIPAIS DA PALESTRA

- ✓ Estabelecer conexão clara entre a dinâmica da fertilidade do solo com a resposta das culturas.
- ✓ Evidenciar que sem conhecimento básico de fertilidade do solo e nutrição de plantas não é possível se manejar os nutrientes visando a utilização eficiente dos mesmos.
- ✓ Fornecer alguns exemplos gerais. Não há condições de abordar o tema com detalhes.
- ✓ Para detalhes e aprofundamento recomendo os livros do IPNI Brasil.

COMO NUNCA ANTES ESTAMOS SOB A MIRA/LUPA DA SOCIEDADE EM GERAL

- Preços e fornecimento
- UTILIZAÇÃO DE ÁREAS NATURAIS
- NITRATOS NA ÁGUA
- ZONAS DE HIPOXIA
- EMISSÃO GEE
- QUALIDADE DO AR

"TREMENDO INCENTIVO/PRESSÃO PARA SE UTILIZAR
INSUMOS DE FORMA ADEQUADA"



Boas Práticas para Uso Eficiente de Fertilizantes

Aplicação das fontes corretas de nutrientes nas doses, hora e local corretos

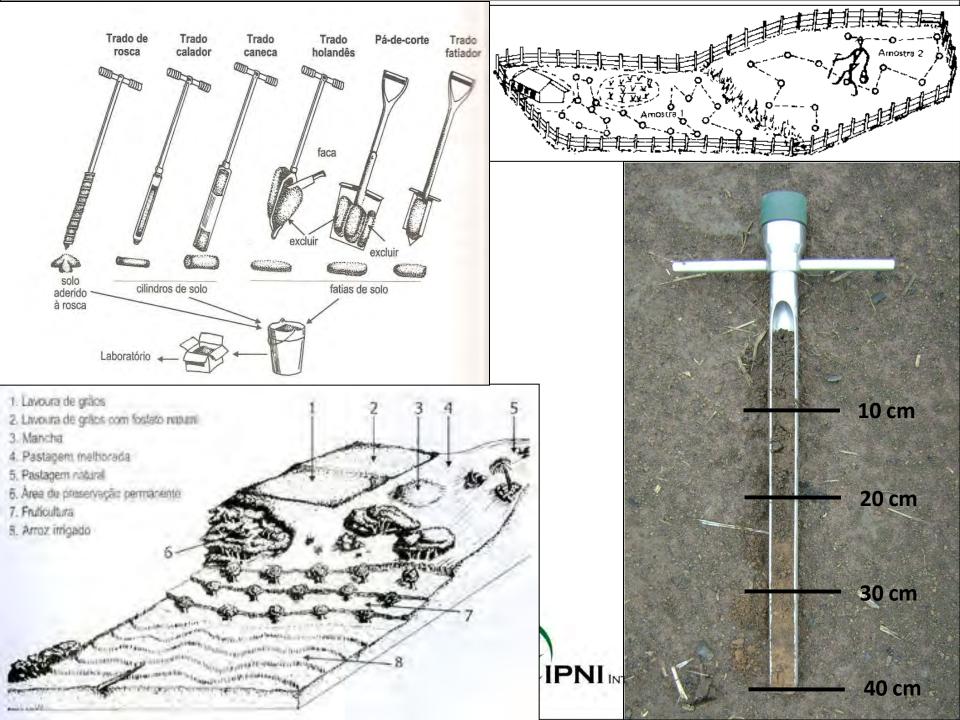
Cultivo de uma área agrícola implica uma dúvida:

CARACTERÍSTICAS QUÍMICAS DO SOLO

pH, P, K, Ca, Mg, S, micro, CTC, V%

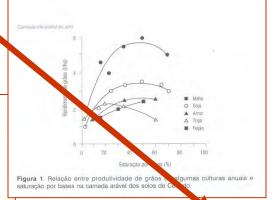
EXIGÊNCIAS DA PLANTA

N, P, K, Ca, Mg, S, Fe, Zn, Mn, Cu, B, Mo, Cl, ...


SÃO AS CARACTERISTÍCAS QUÍMICAS DO SOLO <u>ADEQUADAS</u>
PARA A MANUTENÇÃO DAS EXIGÊNCIAS DA PLANTA DE FORMA
A SE OBTEREM PRODUTIVIDADES <u>ECONOMICAMENTE VIÁVEIS</u>
DIANTE DOS INVESTIMENTOS REALIZADOS ?

Amostragem de solo:

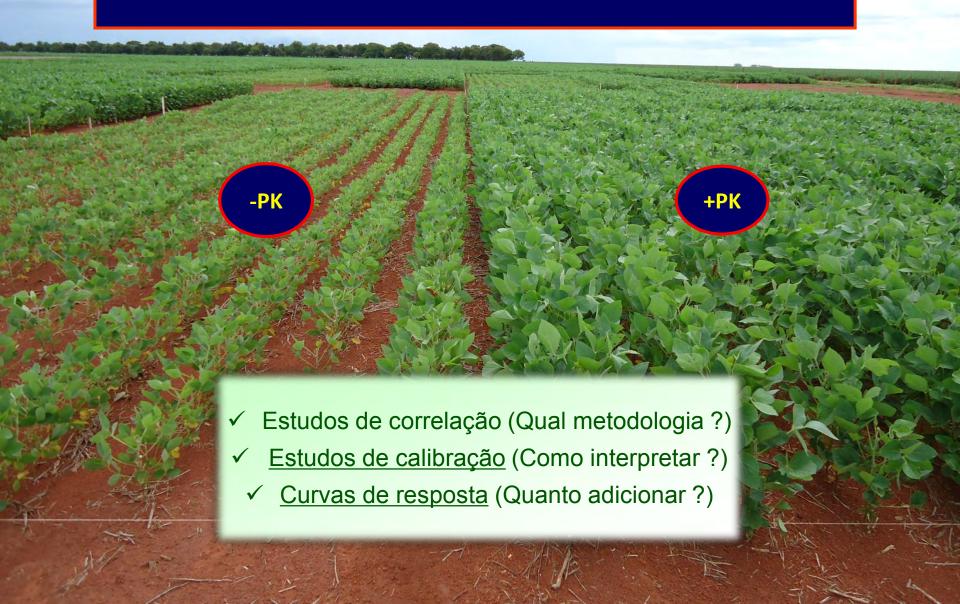
- 1. Levantamento do histórico de cada campo: produtividade, topografia, textura, vegetação anterior, coloração de solo, aplicações operacionais prévias, análise de solo e foliar anterior;
- 2. Planejamento da amostragem de solo: época do ano, número de amostras (20 sub/amostra), pessoal treinado, equipamento utilizado (pode variar c/ textura, compactação e umidade do solo), cuidado permanente com contaminação;
- 3. Definição da profundidade amostrada: tabelas de interpretação e recomendação ajustadadas para 0-20 cm, contudo a amostragem pode variar em função do histórico de manejo. Há várias recomendações.
- 4. Manuseio da amostra: evitar reutilizar embalagens; não armazenar ao sol, secar ao ar antes de enviar ao laboratório, cuidado especial na identificação;
- 5. Escolha do laboratório: procurar os laboratórios com controle de qualidade, atenção a metodologia utilizada (P, acidez potencial)
- 6. Interpretação das análises: deve haver relação com o histórico do campo e tomar cuidado com interpretações matemáticas.

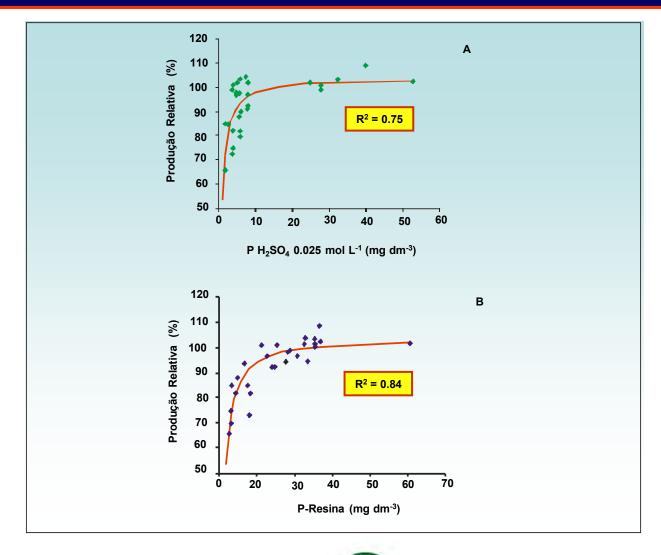

DA ANÁLISE A RECOMENDAÇÕES

Soil Fertility Evaluation												
Sample	pН	O.M g dm ⁻³	P	K	Ca	Mg	Al	H+Al	.3	BS	CEC	V%
			dm ⁻³									
(0-20)	5,4	20	7	1,0	36	14	0	25	2	51	76,0	67
A (2°-40)	4,4	14	4	0,7	23	6	12	42	3	29,7	71,7	41
B (0-20)	5,3	28	42	4,4	48	16	0	35	12	68,4	103,4	66

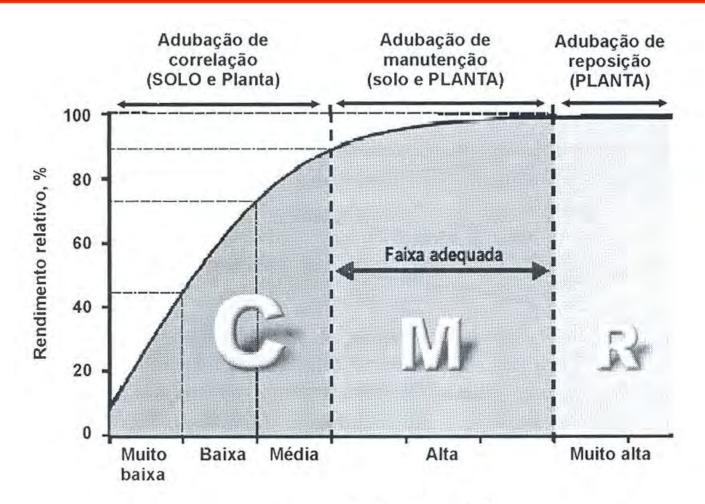
Adubação mineral de plantio: Aplicar de acordo com a análise de solo e a produtividade esperada, conforme a seguinte tabela:

Produtivi- dade esperada	Nitro-	P resina, mg/dm ³				K ⁺ trocável, mmol _c /dm ³			
	gênio	0-6	7-15	16-40	>40	0-0,7	0,8-1,5	1,6-3,0	>3,0
t/ha	N, kg/ha	4	_ P ₂ O ₅	, kg/ha —		-	_ K ₂ O, k	g/ha (²)-	
2- 4	10	60	40	30	20	50	40	30	0
4- 6	20	80	60	40	30	50	50	40	20
6-8	30	90	70	50	30	50	50	50	30
8-10	30	(1)	90	60	40	50	50	50	40
10-12	30	(1)	100	70	50	50	50	50	50


(¹) É improvável a obtenção de alta produtividade de milho em solos com teores muito baixos de P, independentemente da dose de adubo empregada. (²) Para evitar excesso de sais, no sulco de plantio, a adubação potássica para doses maiores que 50 kg/ha de K₂O está parcelada, prevendo-se a aplicação em cobertura.



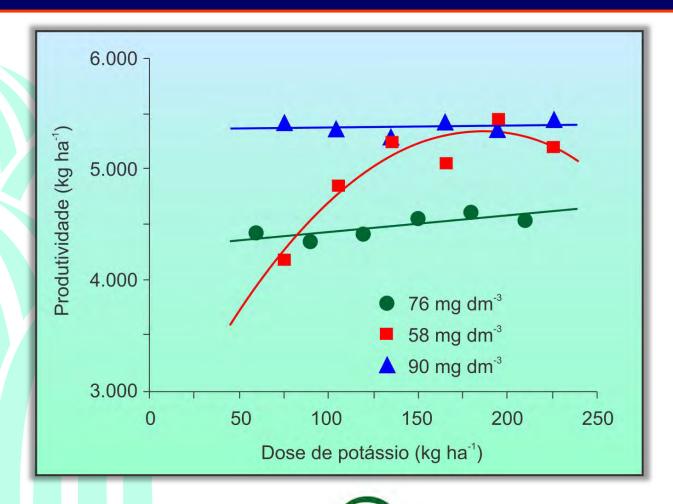
AJUSTES NECESSÁRIOS PARA A AVALIAÇÃO DA FERTILIDADE DO SOLO ATRAVÉS DE MÉTODOS ANALÍTICOS



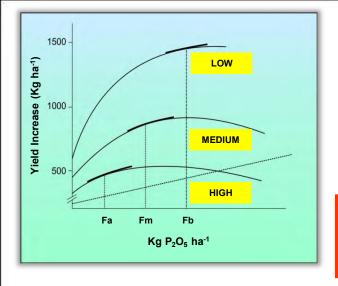
Estudos de Correlação

Estudos de Calibração

Nutriente no solo, mg dm⁻³



Limites de interpretação de teores de potássio e de fósforo em solos


Teor	Produção relativa	K⁺ trocável	P resina					
			Florestais	Perenes	Anuais	Hortaliças		
	%		mg/dm					
Muito baixo	0-70	0,0-0,7	0-2	0-5	0-6	0-10		
Baixo	71-90	0,8-1,5	3-5	6-12	7-15	11-25		
Médio	91-100	1,6-3,0	6-8	13-30	16-40	26-60		
Alto	>100	3,1-6,0	9-16	31-60	41-80	61-120		
Muito alto	>100	>6,0	>16	>60	>80	>120		

Resposta do algodoeiro ao potássio em experimentos realizados no Estado de Mato Grosso, em solos com 58 mg dm⁻³, 76 mg dm⁻³ e 90 mg dm⁻³ de potássio

Tabela de Adubação

Adubação mineral de plantio: Aplicar de acordo com a análise de solo e a produtividade esperada.

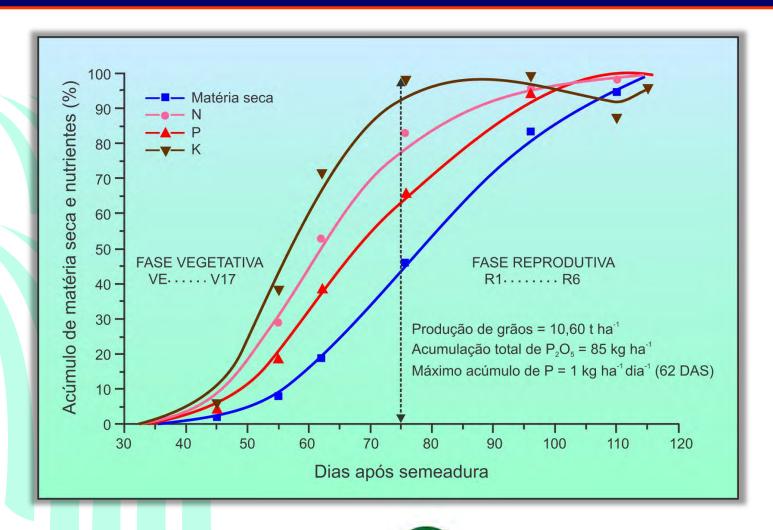
Viold	Nitro wânio		P resina, mg/dm³				K⁺ trocável, mmol _c /dm³			
Yield Nitrogênio	0-6	7-15	16-40	>40	0-0,7	0,8-1,5	1,6-3,0	>3,0		
t/ha	N, kg/ha	P ₂ O ₅ , kg/ha				K ₂ O, kg/ha (²)				
2-4	10	60	40	30	20	50	40	30	0	
4-6	20	80	60	40	30	50	50	40	20	
6-8	30	90	70	50	30	50	50	50	30	
8-10	30	(¹)	90	60	40	50	50	50	40	
10-12	30	(¹)	100	70	50	50	50	50	50	

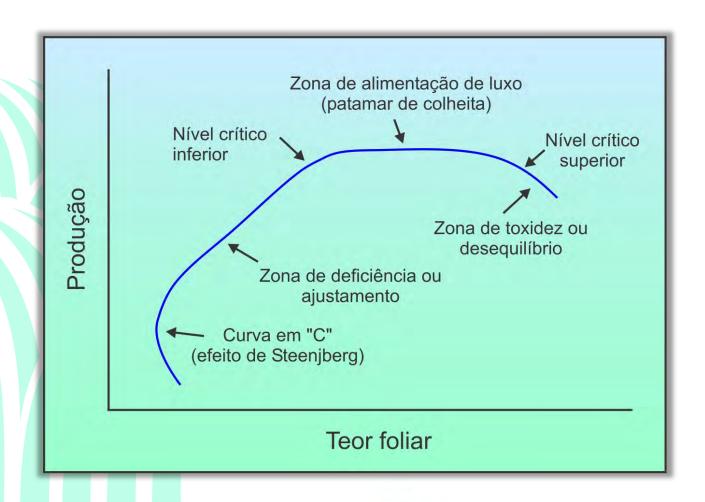
IMPORTANTE NOTAR QUE:

A DOSE É DEFINIDA POR ESTUDOS DE <u>CURVA DE RESPOSTA</u>, PARA CADA CLASSE DE TEOR (<u>ESTUDOS DE CALIBRAÇÃO</u>), PARA DETERMINADO MÉTODO ANALÍTICO (ESTUDOS DE CORRELAÇÃO), PARA DETERMINADA FORMA DE COLETA DA AMOSTRA DE SOLO.

Fonte: Raij et al, 1996.

PROCEDIMENTO DEVE SER ESPECÍFICO PARA:


- ✓ Metodologia
- ✓ Área/região e solos considerados
 - √ Sistema de cultivo
 - ✓ Profundidade de amostragem



Acúmulo de matéria seca, nitrogênio, fósforo e potássio na parte aérea de plantas de milho

Representação geral da relação entre teor foliar e produção (ou matéria seca)

DRIS

Rendimento de soja e concentração de fósforo, cobre e boro nas folhas em função do fósforo aplicado para a sucessão soja-trigo, em Latossolo Roxo distrófico, safra 1998/1999, Londrina-PR

Dose anual de P ₂ O ₅	Rendimento		S	
(kg ha ⁻¹)	(kg ha ⁻¹)	P (g kg ⁻¹)	Cu (mg kg ⁻¹)	B (mg kg ⁻¹)
0	2.884	2,75	10,3	75,9
50	3.539	3,62	11,3	69,1
80	3.542	3,82	8,26	50,7
110	3.193	4,31	7,53	44,6

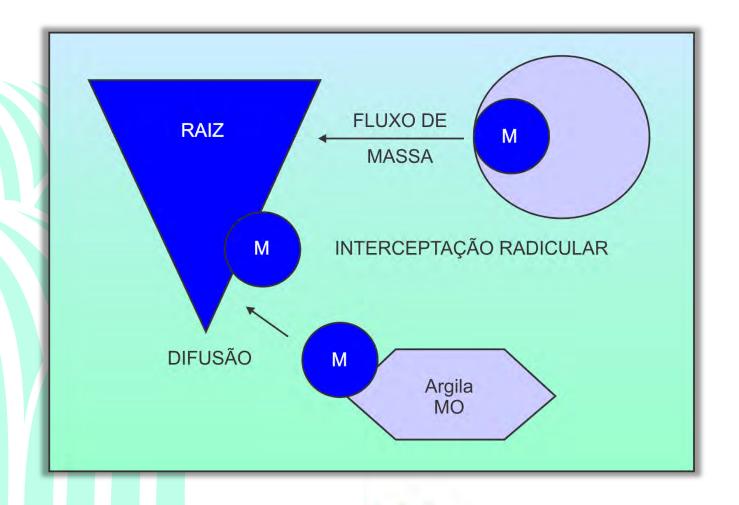
Rendimento de soja e índice DRIS para fósforo, cobre e boro nas folhas em função do fósforo aplicado para a sucessão soja-trigo, em Latossolo Roxo distrófico, safra 1998/1999, Londrina-PR

Dose anual de P ₂ O ₅	Dose anual de P ₂ O ₅ Rendimento		Índice DRIS					
(kg ha ⁻¹)	(kg ha ⁻¹)	Р	Cu	В				
0	2.884	- 9,9	3,3	22,2				
50	3.539	2,8	6,5	16,9				
80	3.542	3,8	-7,4	3,6				
110	3.193	16,6	- 8,3	2,4				

http://www.ipni.org.br

Fonte: Lantmann et al. (2000).

Exemplos de sintomas de deficiência em plantas comerciais



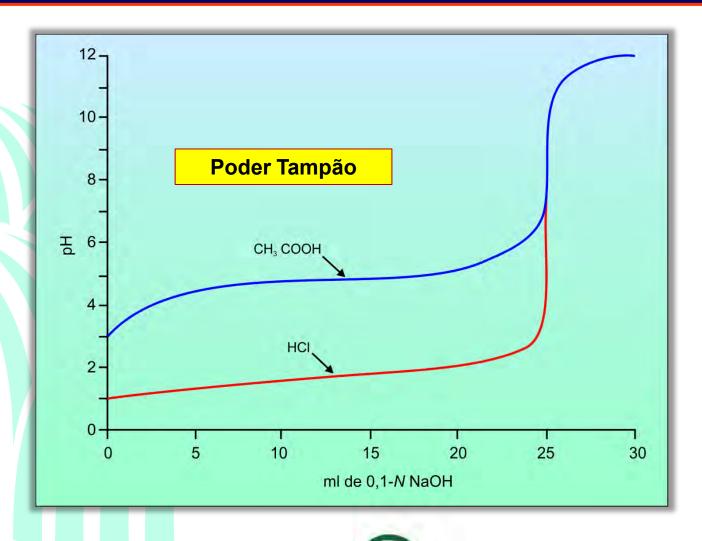
Representação esquemática dos mecanismos de contato íon-raiz

Relação entre o processo de contato e a localização dos fertilizantes

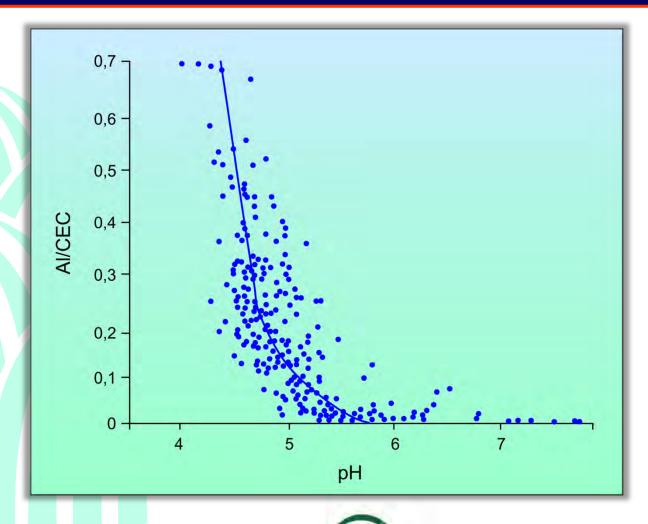
	Processo de c)		
Elemento	Interceptação radicular	Fluxo de massa	Difusã o	Aplicação do fertilizante
Nitrogênio	1	99	0	Distante, em cobertura (parte)
Fósforo	2	4	94	Próximo das raízes
Potássio	3	25	72	Próximo das raízes, em cobertura
Cálcio	27	73	0	A lanço
Magnésio	13	87	0	A lanço
Enxofre	5	95	0	Distante, em cobertura (parte)
Boro	3	97	0	Distante, em cobertura (parte)
Cobre ¹	15	5	80	Próximo das raízes
Ferro ¹	40	10	50	Próximo das raízes
Manganês ¹	15	5	80	Próximo das raízes
Zinco ¹	20	20	60	Próximo das raízes
Molibdênio ²	5	95	0	Em cobertura (parte)

⁽¹⁾ Complementação com aplicação foliar.

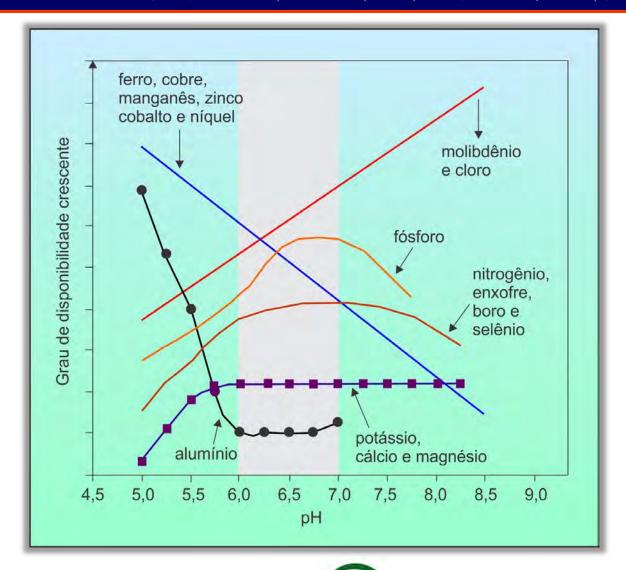
⁽²⁾ Aplicação via semente e/ou foliar.


ACIDEZ E CALAGEM

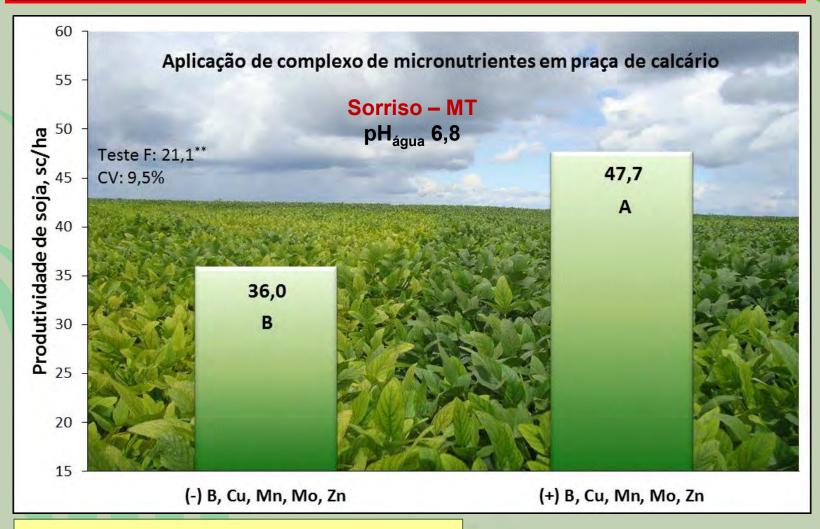
Reações envolvidas na correção da acidez do solo



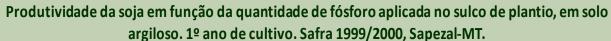
Análise volumétrica: 0,10-N CH₃COOH e 0,10-N HCl com 0,1-N NaOH



Com o aumento do pH do solo, a saturação por Al3+ diminui. Na maioria dos solos, pouco ou nenhum efeito de toxicidade de Al3+ no crescimento das plantas é observado acima de pH 5,0-5,5

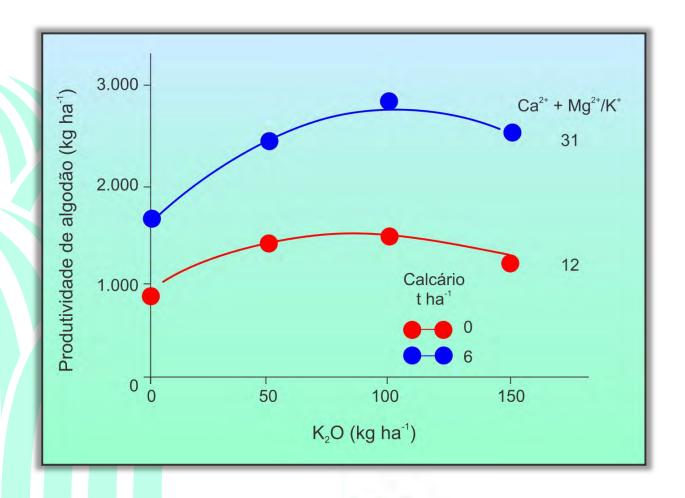


PH X DISPONIBILIDADE DE NUTRIENTES


Efeito da correção da acidez na disponibilidade de micronutrientes no solo

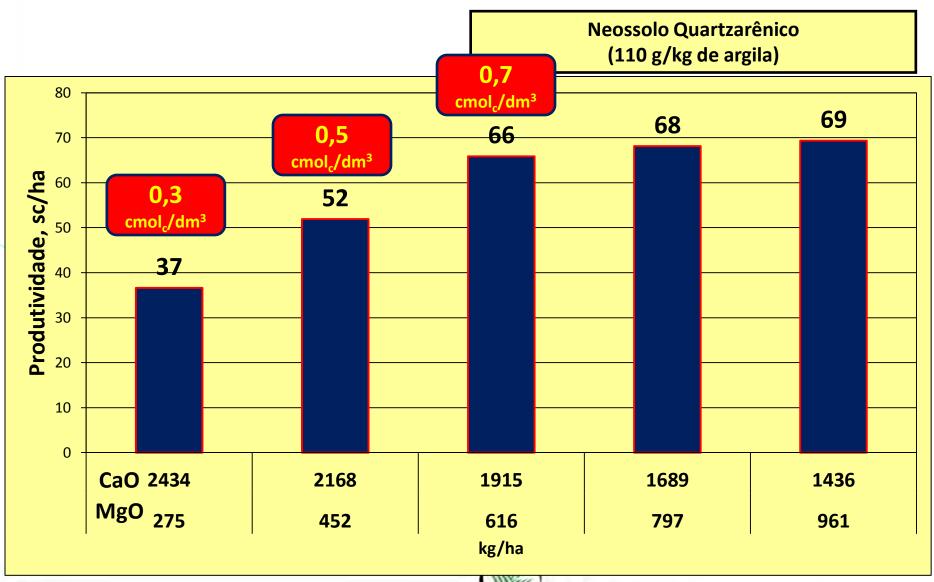
Fonte: Fundação MT/PMA (safra 2011/12)

Efeito da correção da acidez na produtividade das culturas

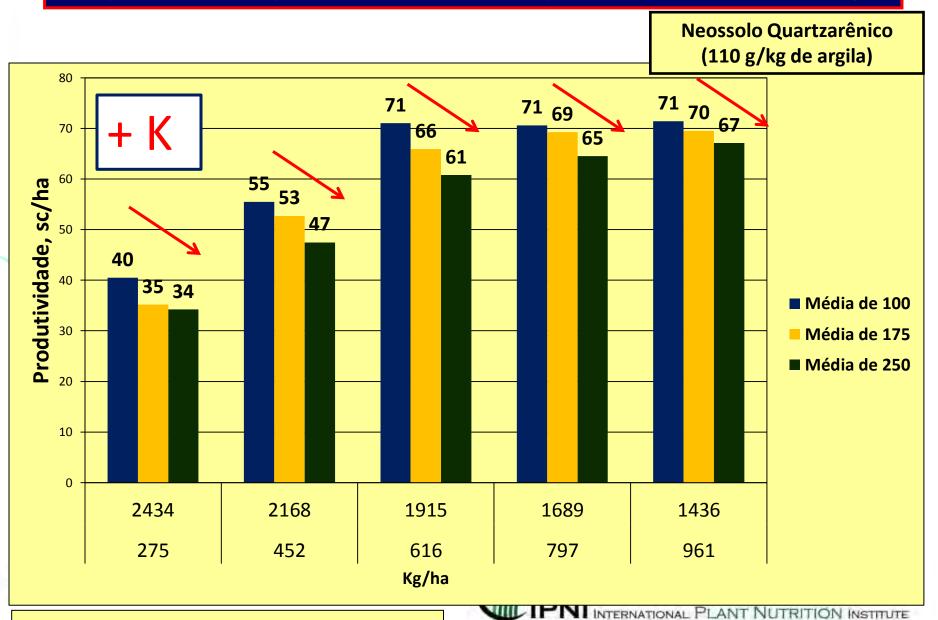

PNI INTERNATIONAL PLANT NUTRITION

Fonte: Fundação MT/PMA

Importância da correção da acidez para a fixação simbiótica de nitrogênio



Influência da adubação potássica na produtividade de algodão, de acordo com o equilíbrio de bases do solo, sem e com calagem


Impacto do tipo de calcário na produtividade de soja

Fonte: Fundação MT/PMA – Safra 2009/2010

Impacto do tipo de calcário na produtividade de soja

Fonte: Fundação MT/PMA – Safra 2009/2010

Manejo da acidez do solo

Quantidade de calcário calculada pelo método da saturação por bases (t/ha) para alcançar 40, 50 e 60%, para áreas de primero ano de cultivo e vegetação de Cerrado e quantidade de calcário necessária para otber os valores desejados.

Lugar	V%	V%	Cal (t/ha)	V %	Cal (t/ha)
Lugai	inicial	desejada	PRNT 80%	obtida	necessária
Campa Nava	8.3	40	2,5	24.6	4.6
Campo Novo	8.3	50	3,3	30.6	5.8
Parecis-MT	8.3	60	4,1	36.7	6.9
	9.0	40	2,8	26.8	4.1
Nova Mutum-MT	9.0	50	3,7	33.8	5.6
	9.0	60	4,7	39.4	7.4

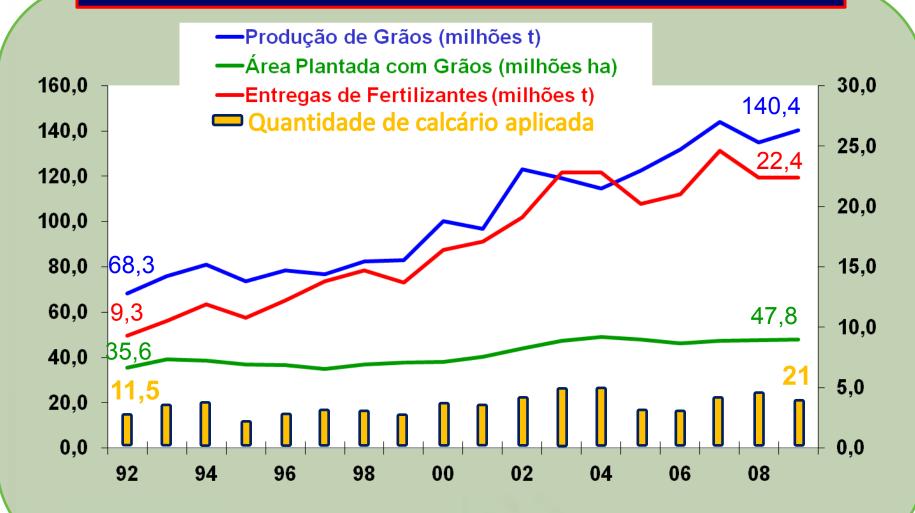
Fonte: Fundação MT/PMA – Dados no publicados

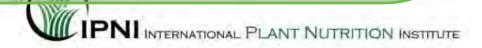
Importância da qualidade operacional

IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

IMAGENES: MÁRCIO VERONESE, FUNDAÇÃO MT/PMA (2012)

Efeito direto da qualidade operacional no cultivo

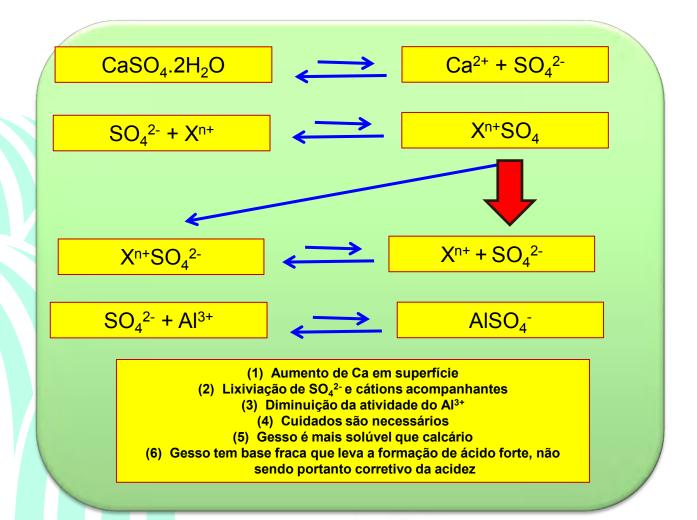




PNI INTERNATIONAL PLANT NUTRITION

Fuente: Haroldo Hoogerheide, Fundação MT (2010).

Produção de grãos, área cultivada e quantidade de NPK na agricultura brasileira (1992-2009)



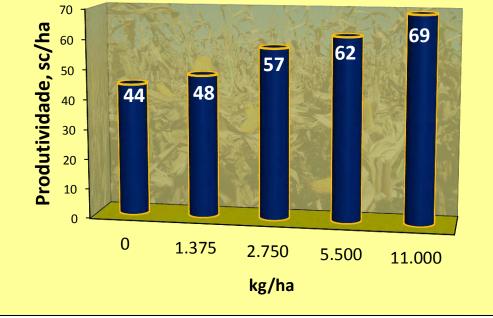
GESSO E GESSAGEM

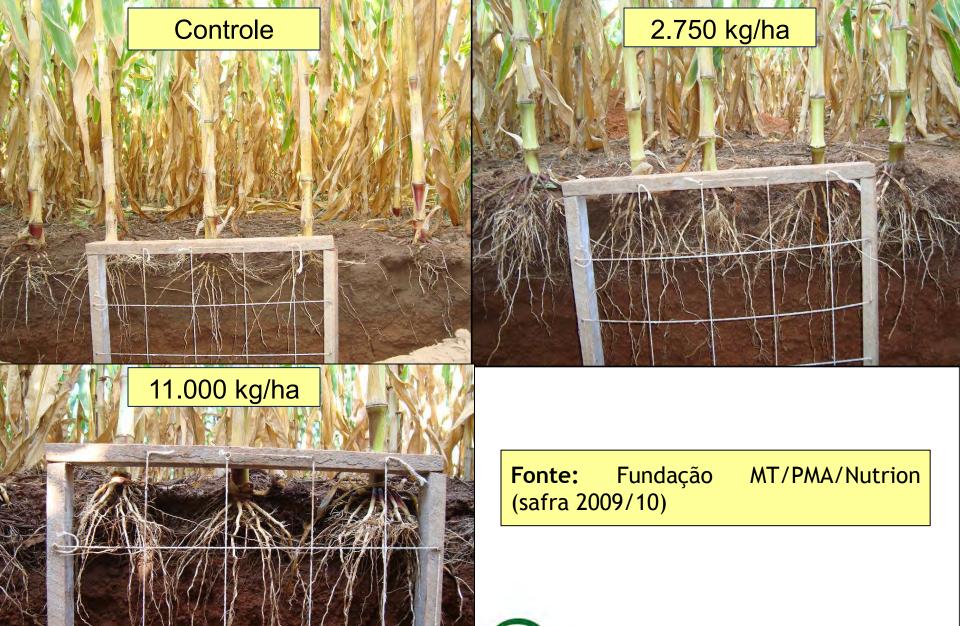
Reações envolvidas na gessagem do solo

Desenvolvimento das raízes do algodoeiro em profundidade, em ausência e em presença de gesso (cada quadrícula mede 15 cm x 15 xm), por ocasião da floração plena, em 22 de março de 2006

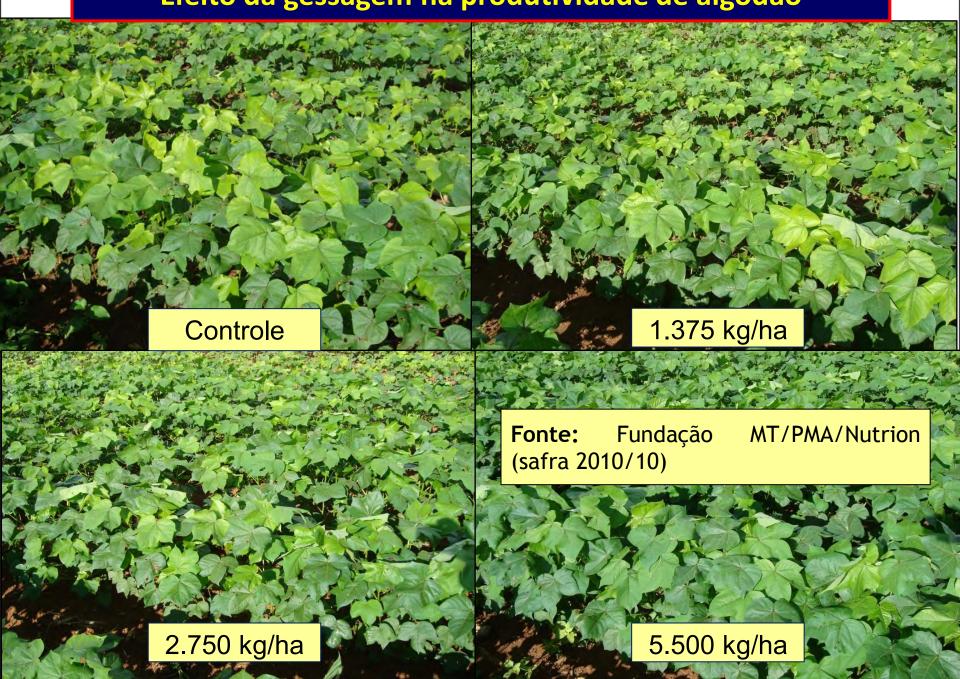
3 t ha⁻¹ de gesso

EFEITO DE APLICAÇÕES DE GESSO NA DISTRIBUIÇÃO DE RAÍZES DE VÁRIAS CULTURAS AO LONGO DE PERFIS DE SOLOS ALTAMENTE INTEMPERIZADOS


Prof.	MILHO ÁFRICA DO SUI DENSIDADE DE R		MILH Brasil Distr. Relativ.	(2)	MAÇ Brasii Densidade i	L ⁽³⁾	ALF GEORGIA ⁽⁴⁾ CO RAÍZ	MPRIMENTO DE
	T ⁽⁵⁾	G ⁽⁶⁾	т	G	т	G	т	G
СМ	M/DM ³		%		CM/G		M/M ³	
0-15	3,10	2,95	53	34	50	119	115	439
15-30	2,85	1,60	17	25	60	104	30	94
30-45	1,80	2,00	10	12	18	89	19	96
45-60	0,45	3,95	8	19	18	89	10	112
60-75	0,08	2,05	2	10	18	89	6	28



Efeito da gessagem na produtividade de soja e milho


Fonte: Fundação MT/PMA/Nutrion (safras 2008/09 e 2009/10)



Efeito da gessagem na produtividade de algodão

11.000

Fonte: Fundação MT/PMA/Nutrion (safra 2009/10)

Figura 1. Rendimento de algodão em caroço em função da dose de gesso agricola com a cultivar FB 993, na Fazenda Água Quente, safra agrícola 2010/2011.

5.500

Dose de gesso agricola, kg/ha

6.875

2,500

0

1.375

2.750

 $Y = 3.584 + 0.26X - 0.000015X^2$

 $R^2 = 0.80$

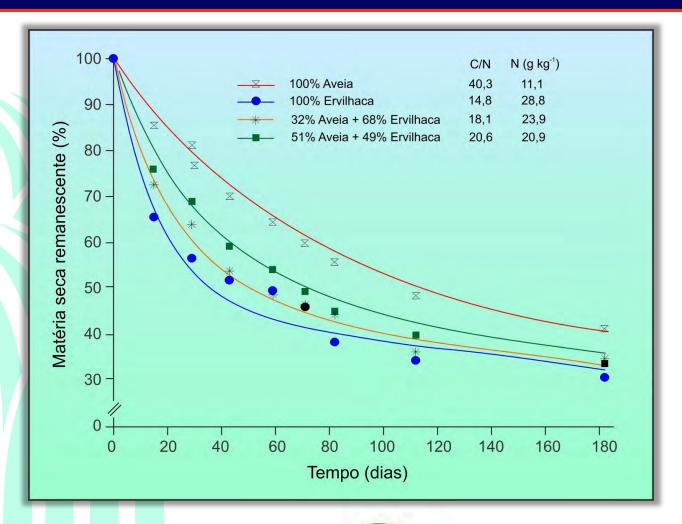
8.250

9.625

'NI INTERNATIONAL PLANT NUTRITION INSTITUTE

Contribuição da matéria orgânica do solo na CTC de solos de diferentes ambientes do território brasileiro

Região	Classes de solos avaliadas (nº)	% da CTC devida à matéria orgânica do solo	Fonte
Estado de São Paulo	16	70 a 74	Raij (1969)
Estado do Paraná	12	75 a 90	Pavan, Bingham e Pratt (1985)
Cerrados	14	75 a 85	Resck (1998)



Dinâmica da matéria orgânica na camada de 0-20 cm de profundidade para os sistemas de cultivo anual-pastagem, em um período de 18 anos, em Latossolo muito argiloso (médias de 24 tratamentos com três repetições, em cada sistema)

Matéria seca remanescente na superfície do solo de resíduos culturais de aveia e ervilhaca solteiras e consorciadas

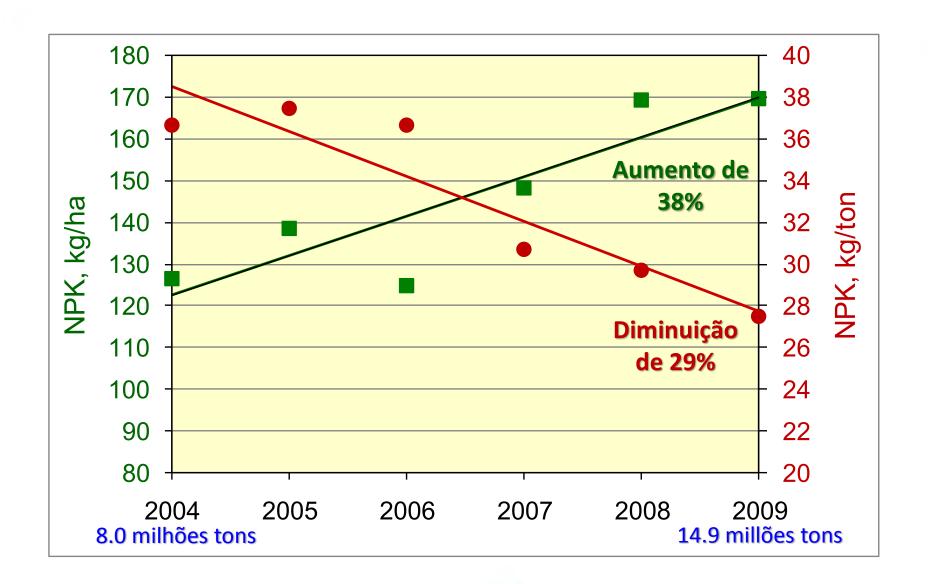
ROTAÇÃO DE CULTURAS / SISTEMAS DE PRODUÇÃO

Exemplos de novas técnicas disponibilizadas pela pesquisa — Integração Lavoura Pecuária

Exemplos de novas técnicas disponibilizadas pela pesquisa — Integração Lavoura Pecuária

IPNI INTERNATIONAL PLANT NUTRITION INSTITUTE

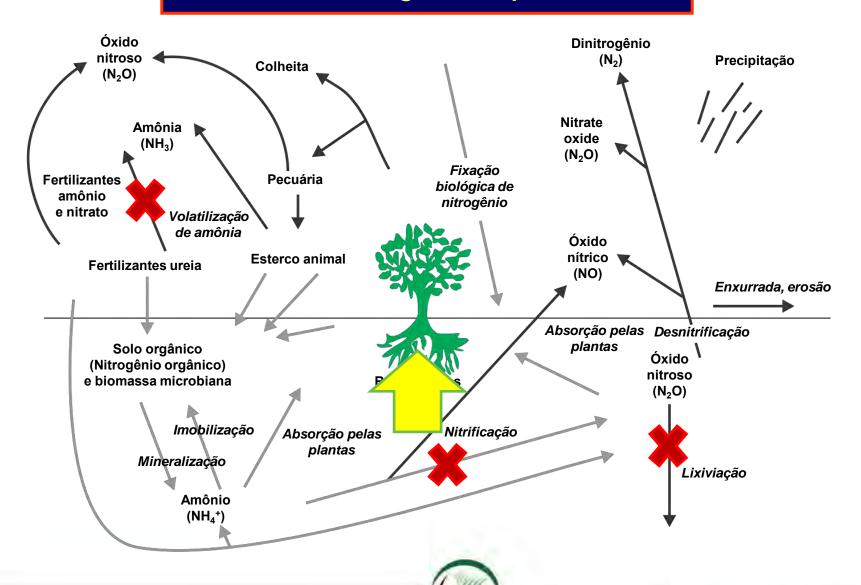
RECUPERAÇÃO DE P LA MUITO ARGILOSO, 22 ANOS

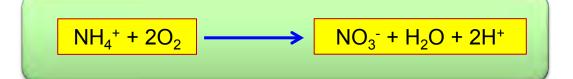

•	Fósforo recuperado			
S.SIMPLES APLICADO	ANUAIS ¹	ANUAIS E CAPIM ²		
KG/HA DE P ₂ O ₅	%			
100	44 85			
200	40	82		
400	35	70		
800	40	62		

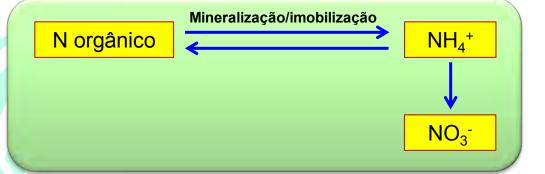
A ÁREA FOI CULTIVADA POR DEZ ANOS COM SOJA, SEGUIDA DE UM PLANTIO COM MILHO E QUATRO CICLOS DA SEQÜÊNCIA MILHO-SOJA, DOIS CULTIVOS DE MILHO E UM DE SOJA.

EXTRAÍDO DE DJALMA MARTINHÃO.

² A área foi cultivada por dois anos com soja, seguida de nove anos com braquiária mais dois anos com soja e dois ciclos da seqüência milho-soja, e cinco anos com braquiária.

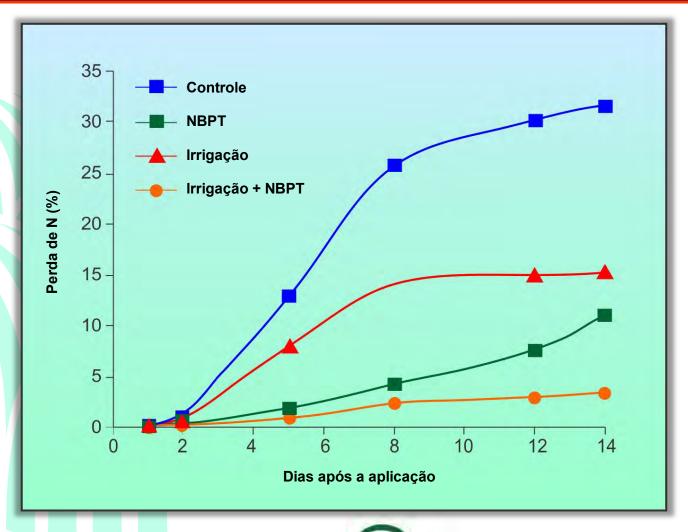



NITROGÊNIO



Ciclo do nitrogênio simplificado

Reações



$$NH_4^+$$
 $NH_3 + H^+$

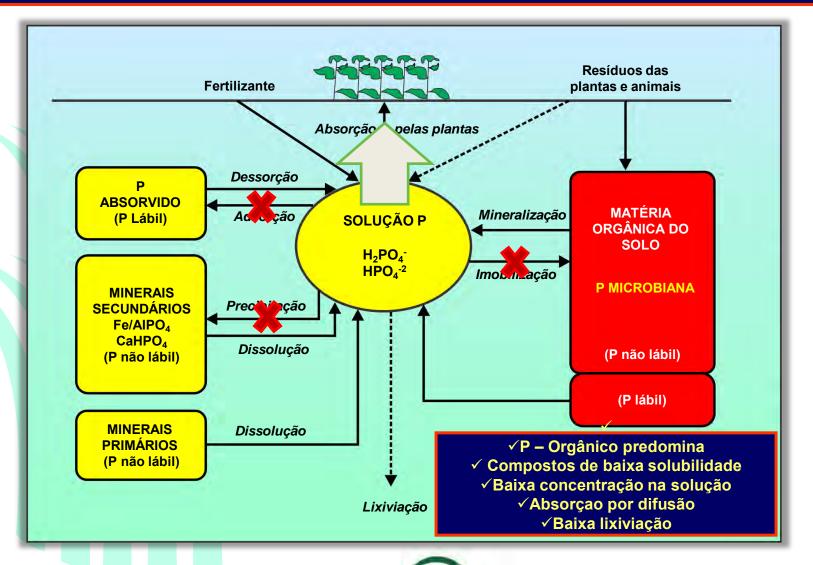
$$CO(NH_2)_2 + 2H^+ + 2H_2O$$
 $2NH_4^+ + H_2CO_3$

Efeito do N-(*n*-butyl) triamida tiofosfórico (NBPT) e chuva simulada (2,0 cm no dia 4 e no dia 7) sobre as perdas de volatilização da superfície aplicada ureia

Resultados recentes da eficiência de proteção da uréia

Tratamentos	Produtividade de milho (kg/ha)					
Kaneko et al. (2012), 29º CNMS						
	Alta altitude	Baixa altitude				
Sem inoculação	7.717	9.514				
Com inoculação	7.965	9.668				
Ureia	7.867	9.327				
Ureia+polimero	8.163	9.856				
Riquetti et al. (2012), 29º CNMS						
	Pré-irrigação	Irrigação + 0 dia	Irrigação + 7 dias			
Ureia	12.480	10.080	11.520			
Ureia + inibidor	13.380	11.700	12.900			
urease						
Duarte et al. (2012), 29º CNMS						
	Capão Bonito, SP	Palmital, SP				
Sem inoculação	9.674	12.069				
Com inoculação	9.310	12.178				

Resultados recentes da eficiência de proteção da uréia


Eficiência agronômica relativa das fontes de nitrogênio para o rendimento de algodão em caroço. Fonte: Zancanaro et al. (2013) – 34º CBCS

Fonte N	Do	Média			
ronte iv	60	90	120	ivieula	
	%				
		Safra	a 2010/11		
Uréia	100	100	100	100	
Uréia + NBPT	101	103	106	103	
Uréia + Polímero	103	102	104	103	
Uréia + S	105	104	106	105	
Uréia + C e B	104	102	105	104	
	Safra 2011/12				
Uréia	100	100	100	100	
Uréia + NBPT	96	97	116	103	
Uréia + Polímero	100	97	110	102	
Uréia + S	95	99	110	101	
Uréia + C e B	98	88	111	99	

FÓSFORO

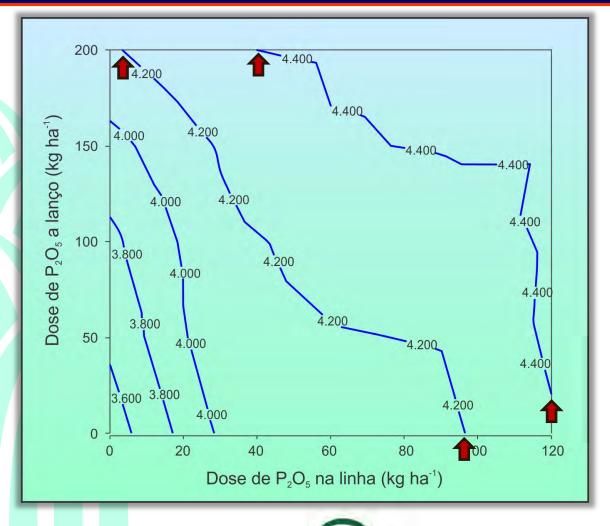
Representação esquemática do ciclo de fósforo no solo

Fósforo absorvido por milho cultivado por 18 dias em vasos contendo 5,5 L de Argissolo Vermelho distrófico de textura média, semeados um dia (1º cultivo) e 101 dias (2º cultivo) após a aplicação de 240 mg vaso-1 de fósforo na forma de superfosfato triplo em pó e em grânulos, antes do 1º cultivo, com solo revolvido e não revolvido após o 1º cultivo

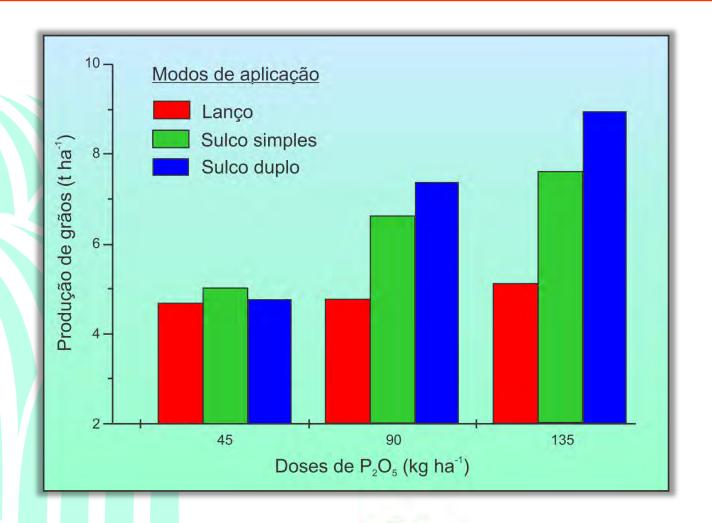
Granulometria do superfosfato triplo	Fósforo absorvido (mg vaso ⁻¹)				
	Cultivo				
	1°	2°			
	Incorporado	Revolvimento do solo			
		Com	Sem		
Pó	5,67 b	2,74 a	2,49 b		
Grânulos de 2 a 2,38 mm	12,08 a	2,91 a	5,11 a		

⁽¹⁾ O tratamento sem fósforo (testemunha) apresentou os seguintes valores para fósforo absorvido: 1° cultivo = 1,42 mg vaso-1; 2° cultivo = 1,46 mg vaso-1

Incremento líquido na produtividade de milho em função de diferentes doses e modos de aplicação da adubação fosfatada


	Modo de aplicação					
P ₂ O ₅ (kg ha ⁻¹)	Lanço	Sulco simples	Sulco duplo	Média		
(Rg Ha)	(t ha ⁻¹)					
45,0	0,73 ⁽¹⁾	1,05	0,81	0,86		
67,5	0,80	1,92	2,14	1,62		
90,0	0,84	2,66	3,42	2,31		
112,5	0,88	3,36	4,23	2,82		
135,0	1,17	3,64	5,00	3,27		
Média	0,88 c ²	2,53 b	3,11 a			

⁽¹⁾ Obtido pela diferença entre a produtividade total do tratamento em estudo (t ha⁻¹) e o custo total de produção, exceto o custo do fósforo, calculado em t ha⁻¹.

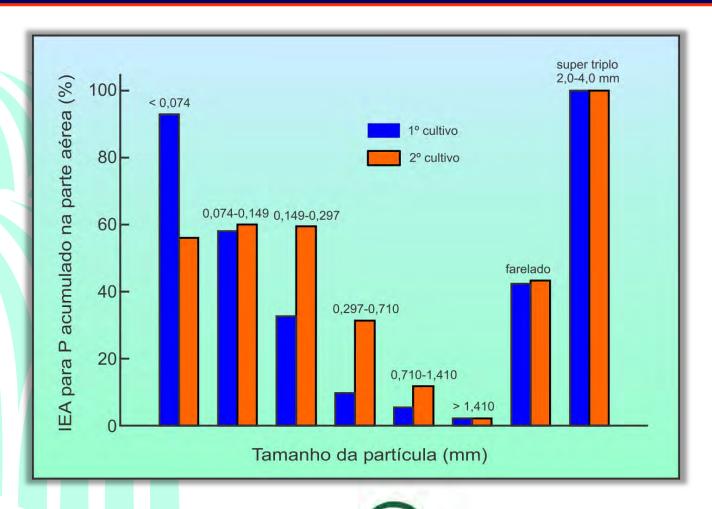

⁽²⁾ Valores com letras iguais na linha não se diferenciam pelo teste de Tukey (P < 0,05).

Isolinhas de produtividade de algodão obtidas em experimento em Mato Grosso, em solo com 710 g kg⁻¹ de argila e 10 mg dm⁻³ de fósforo extraído por mehlich⁻¹

Efeito dos modos de aplicação do fertilizante fosfatado na produção de grãos de milho, em Uberaba-MG

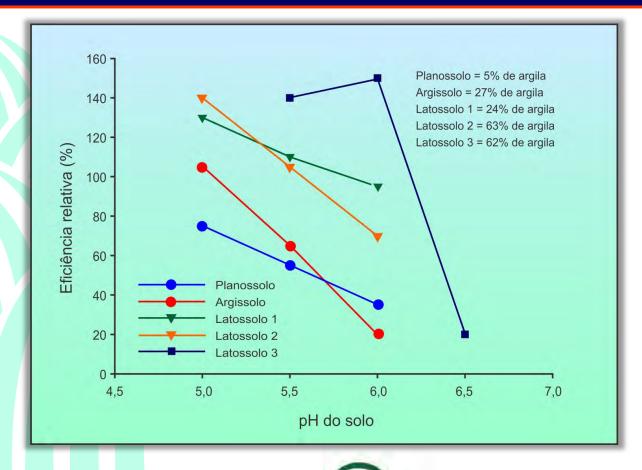
Segmento de raiz micorrizada mostrando zonas de esgotamento de P e aumento da exploração do solo pelo micélio externo

Rendimento de grãos de sorgo, teor de fósforo no solo e número de propágulos de fungos micorrízicos após dois anos de cultivo da área com algumas culturas, em um latossolo argiloso, com a mesma adubação fosfatada


	Rendimento	P extraível no cultivo		Propágulos	
Cultura plantada	de grãos de	(mg dm ⁻³)		de fungos vesículo-arbusculares ¹	
por dois anos	sorgo (kg ha ⁻¹)	Antes	Depois	(nº 10 g ⁻¹ solo)	
Soja	3.077	2,0	1,6	126,0	
Soja + FMVA ²	3.472	3,2	1,7	126,0	
Mucuna	4.772	2,2	1,6	98,9	
Arroz	1.789	1,9	1,8	59,3	
Repolho	1.183	1,9	1,5	11,0	
Sem plantio	2.400	2,8	1,7	17,0	
	dms (5%)	981	ns	ns	

⁽¹⁾ Avaliados 11 semanas depois da germinação do sorgo.

⁽²⁾ Soja inoculada com fungos micorrízicos vesículo-arbusculares exóticos.


Índice de Eficiência Agronômica (IEA) para fósforo acumulado na parte aérea de plântulas de milho, aos 21 dias de idade, em dois cultivos em casa de vegetação, em função do tamanho da partícula do fosfato natural de Gafsa

 $Ca_{10}(PO_4)_{6-X}(CO_3)_XF_{0.4X+2} + 12H^+ + 10Ca^{2+} + (6-X)H_2PO_4^- + XCO_2 + (2+0.4X)F + XH_2O_3$

Eficiência relativa do fosfato natural de Gafsa em cinco solos do Rio Grande do Sul em função do pH

Fonte: DYNIA (1977).

Fatos importantes:

- ✓ Gigantesca pressão para semear 27,5 milhões de hectares em 30 dias agronômicos úteis;
- Estimativa de 34.375 semeadoras (20 linhas x 0,5 m) para executar essa tarefa;
- ✓ Fósforo (P) não é móvel, principalmente em solos tropicais mineralogia oxídica e alta fixação;
- Exemplos de resultados positivos se devem ao histórico de adubação (P já disponível no solo) e ao sistema de manejo do solo adotado;

Fonte: Fundação MT/PMA – Encontro Técnico 2013

Adubação no sulco x superfície: Soja

a) Formas de correção do perfil do solo:

- Sem correção de P + 200 kg/ha de gesso;
- 2- 200 kg/ha de P₂O₃ em superfície + 200 kg/ha de gesso;
- 3- 200 kg/ha de P₂O₅ em superfície + 3.250 kg/ha de gesso;
- 4- 200 kg/ha de P₂O₅ a 20 cm + 200 kg/ha de gesso;
- 5- 200 kg/ha de P₂O₅ a 20 cm + 3.250 kg/ha de gesso;
- 6- 200 kg/ha de P₂O₃ a 40 cm + 200 kg/ha de gesso;
- 7-600 kg/ha de P₂O₅ a 40 cm + 200 kg/ha de gesso.

b) Modo de aplicação de P:

Testemunha (sem P), no sulco e em superfície

c) Dose de P2O5 aplicada:

0, 50 e 100 kg/ha

Latossolo Vermelho distrófico (65% de argila) Teor inicial: 2,7 mg/dm³ de P

Fonte: Fundação MT/PMA – Encontro Técnico 2013

Sem correção de P + 200 kg/ha de gesso

Testemunha

50 kg/ha P2O, no sulco

50 kg/ha P2O3 em superfície

Safra 2012/13

100 kg/ha P2O, no sulco

100 kg/ha P2O, em superfície

Fonte: Fundação MT/PMA – Encontro Técnico 2013

Tratamento	Modo de correção do solo						
	1	2	3	4	5	6	7
	Produtividade de soja (safra 2010/11)						
Testemunha	33 c	57 a	62 a	64 a	66 a	65 a	64 a
50 kg/ha P ₂ O ₅ sulco	48 ab	65 a	64 a	65 a	64 a	67 a	66 a
50 kg/ha P ₂ O ₅ superfície	42 b	61 a	61 a	64 a	67 a	64 a	65 a
100 kg/ha P ₂ O ₅ sulco	55 abc	67 a	67 a	67 a	64 a	68 ≥	68 ≥
100 kg/ha P ₂ O ₅ superfide	49 ab	65 a	64 ≥	67 a	65 a	66 ≥	68 a
			Produtivid	lade de soja (sa	ıfra 2011/12)		
Testemunha	21 Б	54 a	58 a	47 Ь	53 a	49 Ь	59 ≥
50 kg/ha P2O5 sulco	38 ab	56 a	68 ≥	51 ab	59 a	52 ab	59 a
50 kg/ha P ₂ O ₅ superfície	36 ab	55 a	65 a	53 ab	63 a	57 a	58 a
100 kg/ha P ₂ O ₅ sulco	45 a	57 a	61 a	51 ab	62 a	55 ab	55 a
100 kg/ha P ₂ O ₅ superfide	49 a	58 a	63 a	59 a	64 a	57 a	59 a
	Produtividade de soja (safra 2012/13)						
Testemunha	11 c	53 a	48 a	39 Б	48 Ь	38 b	66 a
50 kg/ha P ₂ O ₅ sulco	35 b	57 a	58 a	56 🗃	58 ab	56 a	64 a
50 kg/ha P ₂ O ₅ superfície	37 Ь	52 a	59 ≥	61 a	56 ab	59 a	63 a
100 kg/ha P₂O₂ sulco	55 abc	62 ≥	64 ≥	60 ₃	62 a	63 a	65 a
100 kg/ha P ₂ O ₅ superfide	58 a	62 ≥	67 a	61 a	68 a	65 a	64 a
	Produtividade de soja (média das três safras)						
Testemunha	22 c	55 a	56 a	50 b	56 c	51 b	63 a
50 kg/ha P ₂ O ₅ sulco	40 ab	59 a	63 a	58 ab	60 Ь	58 =	63 a
50 kg/ha P ₂ O ₅ superfície	38 b	56 a	62 a	59 a	62 ab	60 a	62 a
100 kg/ha P ₂ O ₅ sulco	52 abc	62 a	64 a	59 a	63 ab	62 a	63 a
100 kg/ha P₂O₃ superfíde	52 a	62 ≥	65 a	62 a	66 a	63 a	64 a

¹⁻ Sem correção de P + 200 kg/ha de gesso;

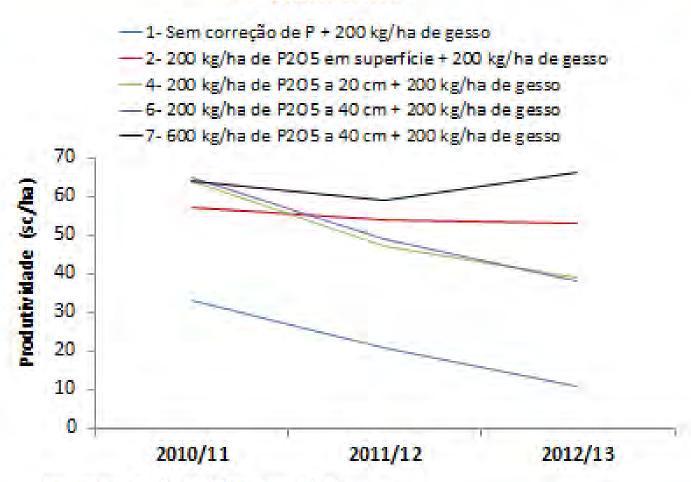
^{2- 200} kg/ha de P₂O₅ em superfíde + 200 kg/ha de gesso;

^{3- 200} kg/ha de P₂O₅ em superfide + 3.250 kg/ha de gesso;

^{4- 200} kg/ha de P2Os a 20 cm + 200 kg/ha de gesso;

^{5- 200} kg/ha de P₂O₅ a 20 cm + 3.250 kg/ha de gesso;

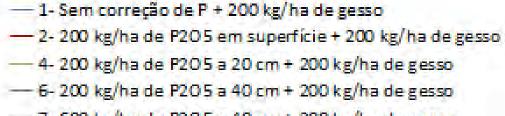
^{6- 200} kg/ha de P₂O₅ a 40 cm + 200 kg/ha de gesso;

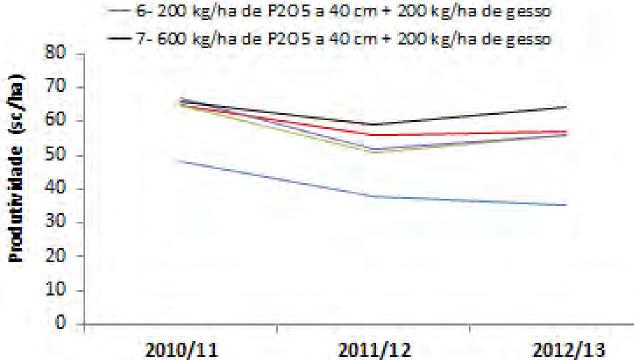

^{7- 600} kg/ha de P₂O₅ a 40 cm + 200 kg/ha de gesso.

Fonte: Fundação MT/PMA – Encontro Técnico 2013

Correção de P: safras 2010/11, 2011/12 e 2012/13

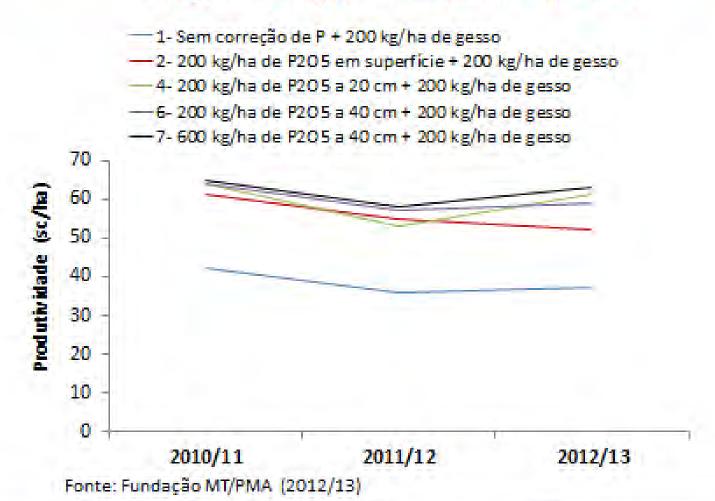
Testemunha


Fonte: Fundação MT/PMA (2012/13)


Fonte: Fundação MT/PMA – Encontro Técnico 2013

Correção de P: safras 2010/11, 2011/12 e 2012/13

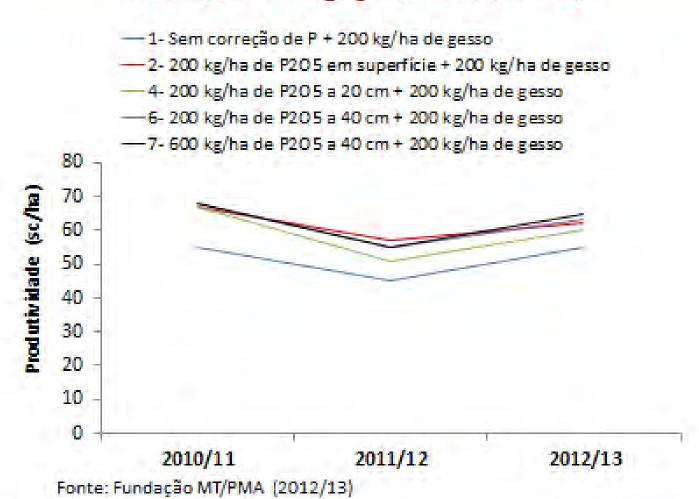
50 kg/ha de P2O5 no sulco (anual)


Fonte: Fundação MT/PMA (2012/13)

Fonte: Fundação MT/PMA – Encontro Técnico 2013

Correção de P: safras 2010/11, 2011/12 e 2012/13

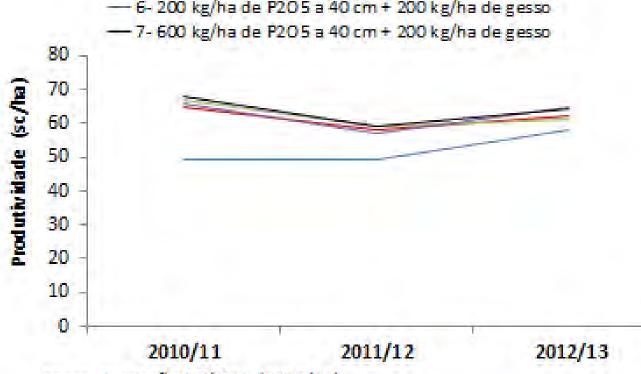
50 kg/ha de P2O5 em superfície (anual)



Fonte: Fundação MT/PMA – Encontro Técnico 2013

Correção de P: safras 2010/11, 2011/12 e 2012/13

100 kg/ha de P2O5 no sulco (anual)


Fonte: Fundação MT/PMA – Encontro Técnico 2013

Correção de P: safras 2010/11, 2011/12 e 2012/13

100 kg/ha de P2O5 em superfície (anual)

- 1- Sem correção de P + 200 kg/ha de gesso
- 2- 200 kg/ha de P2O5 em superfície + 200 kg/ha de gesso
- 4- 200 kg/ha de P2O 5 a 20 cm + 200 kg/ha de gesso
- -- 6- 200 kg/ha de P2O 5 a 40 cm + 200 kg/ha de gesso

Fonte: Fundação MT/PMA (2012/13)

Fonte: Fundação MT/PMA – Encontro Técnico 2013

Dinâmica do fósforo em Sistemas de Produção com aporte e levado de carbono ao longo do tempo

No SPD, as razões para a eficiência da aplicação superficial de P são atribuidas ao maior teor de água (necessário para a difusão de P) na camada superficial do solo e também porque, havendo maior teor de matéria orgânica nessa camada, haverá menor atividade de Al³+, além do P ligado ao Al nessa matéria orgânica ser mais solúvel que o P ligado à argila (Thomas, 1986).

Tabela 18. Percentagem de ³²P absorvido por milho em função do método de aplicação de P. Fonte: Singh et al. (1966).

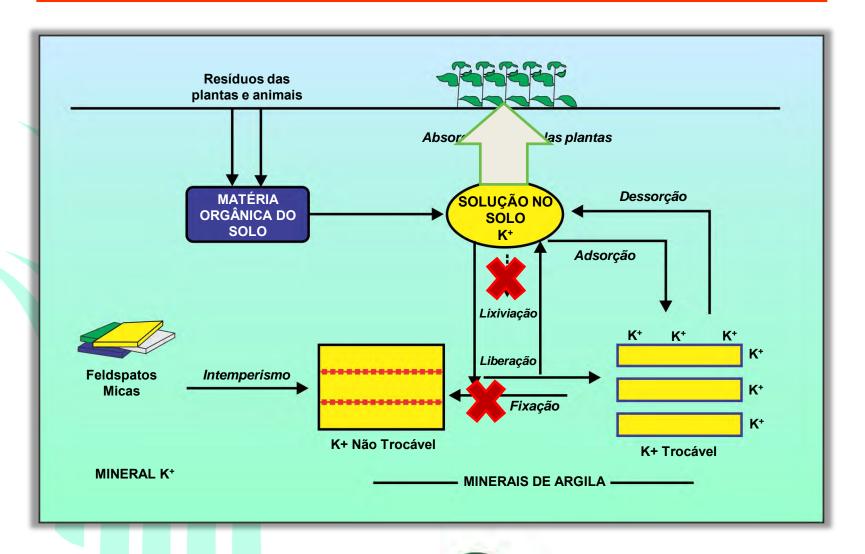
Dias após a semeadura	% de P	como ³² P	% de P na planta		
	Plantio direto na superficie	Convencional incorporado	Plantio direto na superficie	Convencional incorporado	
30	54	16	0,22	0,15	
46	43	32	0,18	0,18	
60	25	21	0,16	0,13	
67	36	37	0,15	0,15	

Fonte: Fundação MT/PMA – Encontro Técnico 2013

CONSIDERAÇÕES - Para a Cultura Soja

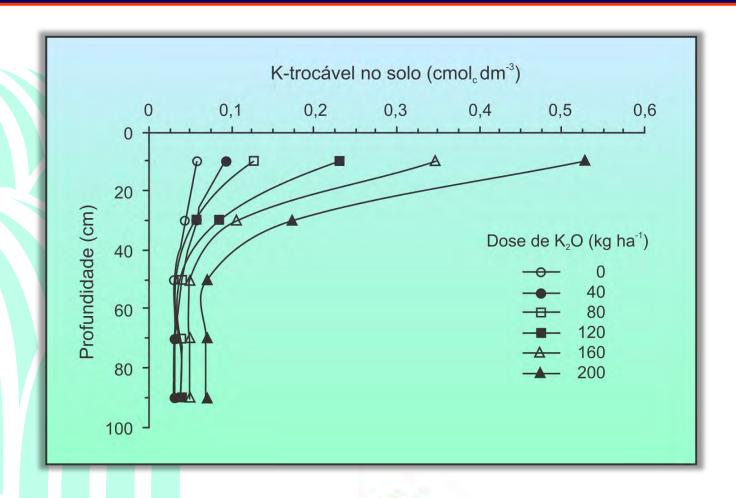
- ✓ Para quem deixou de fazer adubação no sulco de plantio para fazer em superfície, continua fazendo adubação localizada porém, devido ao revolvimento superficial, pratica a adubação localizada: " adubação em camada";
- ✓ A adubação anual em superfície em solos pobres em P apresenta eficiência menor que a adubação no sulco de plantio.
- ✓ Com o tempo não percebe-se diferença devido a correção gradual do solo;
- ✓ Os fatores que têm maior influência sobre os resultados obtidos com a adubação superficial em solos cultivados a tempo em SPD e determinam a eficiência de aproveitamento do P são:
 - A correção prévia do solo;
 - Sistemas de produção adotado ao longo do tempo;
 - Regularidade de precipitação pluviométrica;

Fonte: Fundação MT/PMA – Encontro Técnico 2013


CONSIDERAÇÕES - Para a Cultura Soja

- ✓ A prática de adubação superficial de P, ao longo do tempo, apresentará dependência elevada das condições pluviométricas durante cada cultivo, sendo que o risco maior vai ser quanto mais superficial for a correção prévia do solo e/ou sistemas com aporte baixo de resíduos vegetais e/ou limitações físicas;
- ✓ Em condição de pluviometria menos regular a concentração elevada de P no solo, ao longo do tempo, nos primeiros centímetros de profundidade, limitará a produtividade, sendo que a continuidade dependerá do objetivo de cada produtor e dos resultados financeiros;
- ✓ O PMA acredita que, sob o ponto de vista de adubação isoladamente, que:
 - quem partir de solos efetivamente corrigidos quanto a acidez e de P em profundidade,
 - sem limitação mecânica,
 - e praticar sistemas de produção com aporte elevado de resíduo vegetal sobre a superfície do solo,
 - mesmo havendo concentração de P cada vez maior nas camadas superficiais, terá longevidade elevada neste sistema de adubação em superfície;

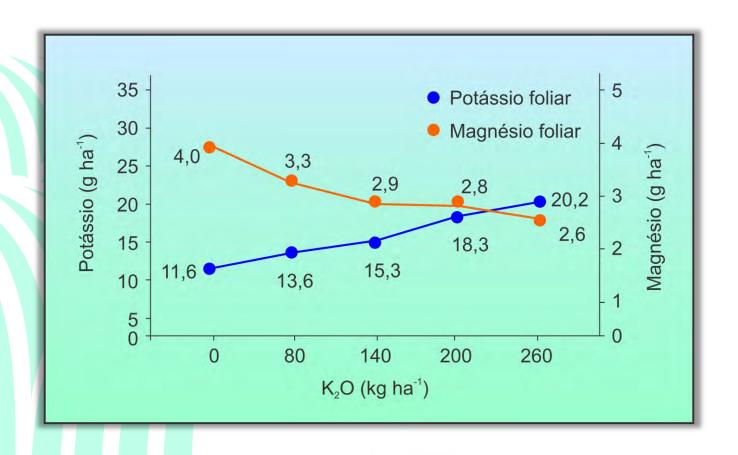
POTÁSSIO



CICLO DO POTÁSSIO EM SOLOS

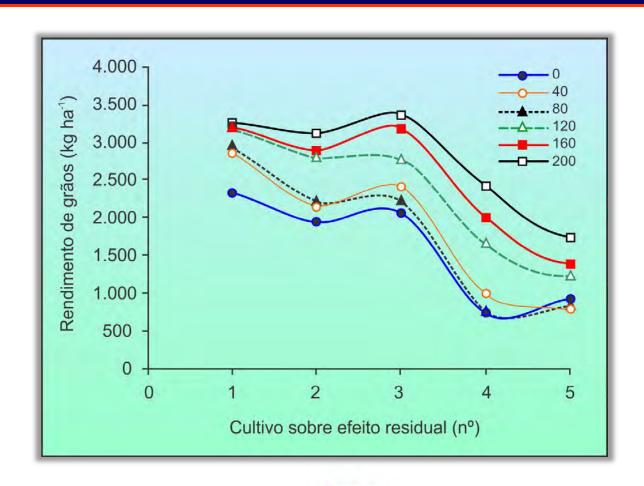
Teor de potássio trocável no solo em função de doses de K₂O aplicadas e da profundidade avaliada; médias da safra 2000/01, em Londrina-PR

RESPOSTA DA SOJA À APLICAÇÃO DE CLORETO DE POTÁSSIO EM COBERTURA, EM DIFERENTES ÉPOCAS DE APLICAÇÃO.

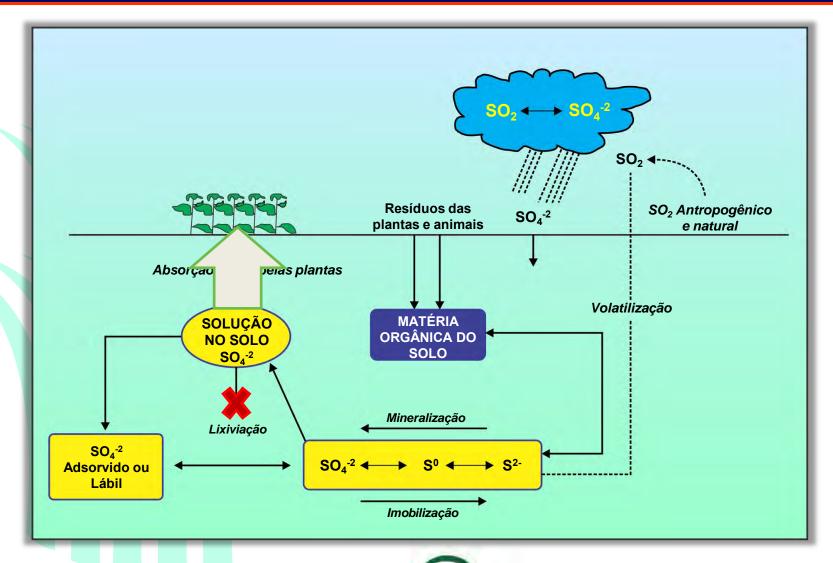

Avaliações							
Tratamentos	ALTURA DE Planta	NÚMERO DE VAGAS	PESO DE 1000 SEMENTES	PRODUTIVIDADE KG/HA	Aumento kg/ha		
TESTEMUNHA	61,00в*	62,23в	128,40c	2581,40в	0,00		
30 DIAS DAP	66,33ав	61,38в	130,00AB	2577,90в	-3,50		
20 DIAS DAP	67,33ав	63,52в	131,50AB	2621,30в	39,90		
10 DIAS DAP	66,33ab	62,39в	133,9ABC	2578,20в	-3,20		
NO PLANTIO EM COBERTURA	68,67ab	64,50в	133,5 _{ABC}	2651,70в	70,30		
10 DIAS DDP	71,67A	66,48A	136,43A	2746,90A	165,50		
20 DIAS DDP	74,00A	72,68A	141,33A	3003,10A	421,70		
30 DIAS DDP	72,33A	71,21A	148,00A	2942,30A	360,90		
CY (%)	4,21%	3,32%	1,97%	3,03%			

^{*} MÉDIAS SEGUIDAS DE MESMA LETRA NA COLUNA NÃO DIFEREM PELO TESTE TUKEY A 5%.

FONTE: BACKES ET AL. (2007)

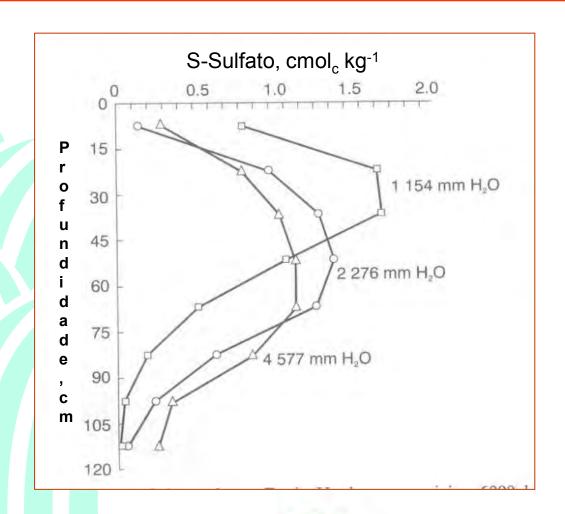

Variação das concentrações de potássio e magnésio na folha do algodoeiro, em função das doses de K₂O

Rendimento de grãos de soja de cultivos sob efeito residual de cinco anos de aplicação de doses de K₂O; média das safras 1995/96 a 1999/00, com as cultivares BR-16 e BR-13, em Ponta Grossa-PR. Embrapa Soja, Londrina-PR.

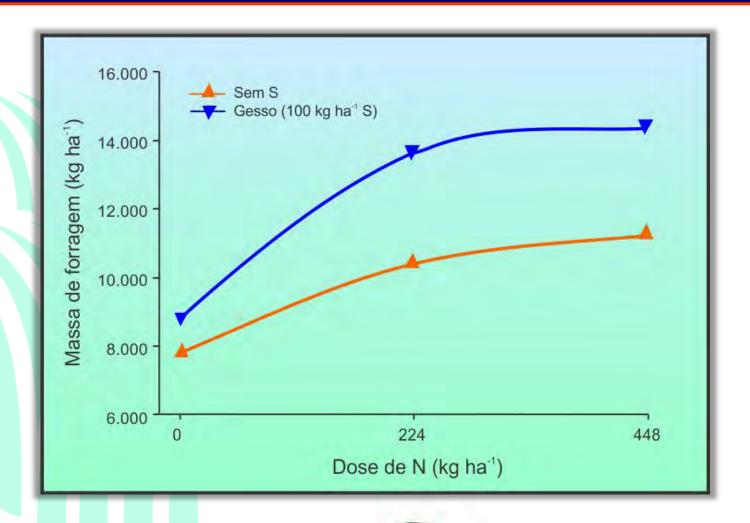


Fonte: Borkert et al., 2004.

ENXOFRE

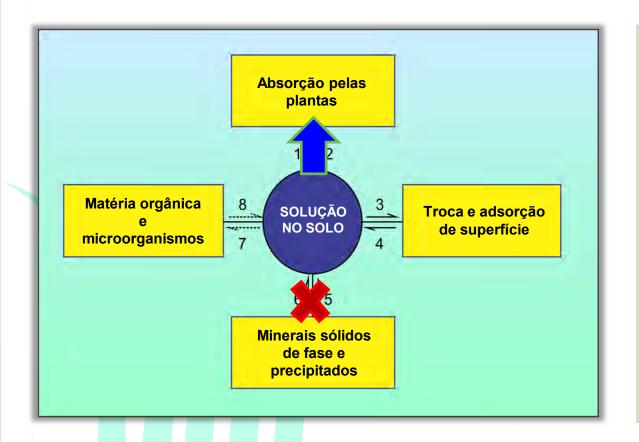


Versão simplificada do ciclo global do enxofre



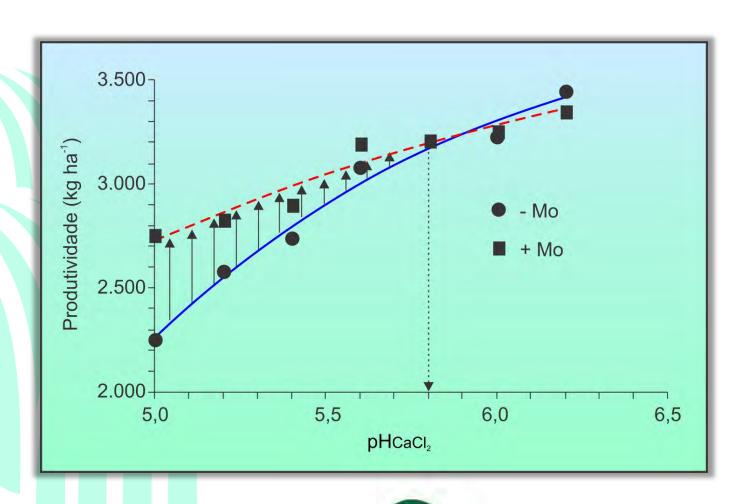
Movimento de enxofre no perfil do solo

Resposta da grama bermuda ao fertilizante nitrogenado na presença e na ausência de adubação com enxofre

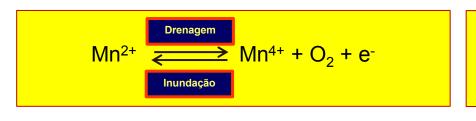


MICRONUTRIENTES

Relações entre as diversas formas de micronutrientes em solo


Reações 1 e 2 representam absorção pelas plantas e exsudação, respectivamente; Reações 3 e 4 representam a adsorção e dessorção, respectivamente; Reações 5 e 6 representam precipitação e dissolução, respectivamente; Reações 7 e 8 representam imobilização e mineralização, respectivamente. Todos estes processos interagem para controlar a concentração de micronutrientes na solução do solo.

Formas de micronutrientes nos solos:


- √ Solução do solo
 - ✓ Trocável
- ✓ Adsorvido no complexo de troca
- ✓ Precipitados, quelatizado ou complexado
 - ✓ Minerais primários

Relação entre o pH do solo e a resposta da soja a aplicação de molibdênio, em um Latossolo Vermelho localizado em Campo Mourão, PR.

Fe, Mn X Aeração

Aeração excessiva diminui a disponibilidade de ferro e manganês

SUCESSO A TODOS, SUCESSO À ATIVIDADE AGRÍCOLA, e MUITO GRATO PELA ATENÇÃO!

