

## O USO EFICIENTE DE FERTILIZANTES EM CITROS

Heitor Cantarella
Instituto Agronômico
Campinas



#### Uso eficiente de fertilizantes: roteiro

- Eficiência de fertilizantes
- Caracterização dos (principais) fertilizantes
- Fertilizantes e ambiente
- BPM: boas práticas de manejo
- Fósforo
- Nitrogênio
- Fertilizantes de eficiência aumentada
- Considerações finais

### Eficiência média de uso de nutrientes

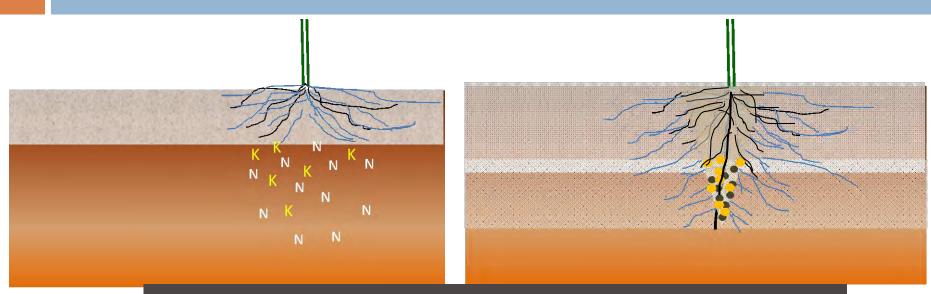
- □ N: 40 60%
- □ P: 10 30%
- □ K: 50 70%
  - O que significam esses números?
  - Qual o horizonte de tempo?
    - Curto prazo: \$\$\$
    - Baixa eficiência em longo prazo: perda ou imobilização permanente

## Solubilidade de alguns compostos usados como fertilizantes

| Composto            | Fórmula                                         | Solubilidade em água (g/L) |
|---------------------|-------------------------------------------------|----------------------------|
| Carbonato de cálcio | CaCO <sub>3</sub>                               | 0,014                      |
| Gesso               | CaSO <sub>4</sub> .2H <sub>2</sub> O            | 2,5                        |
| Fosfato monocálcico | $Ca(H_2PO_4)_2.H_2O$                            | 18                         |
| Fosfato bicálcico   | CaHPO <sub>4</sub> .2H <sub>2</sub> O           | 0,32                       |
| Fosfato tricálcico  | $Ca_3(PO_4)_2$                                  | 0,02                       |
| Cloreto de potássio | KCI                                             | 340                        |
| Sulfato de potássio | K <sub>2</sub> SO <sub>4</sub>                  | 111                        |
| Ureia               | (NH <sub>2</sub> ) <sub>2</sub> CO              | 1080                       |
| Sulfato de amônio   | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> | 754                        |
| Nitrato de amônio   | NH <sub>4</sub> NO <sub>3</sub>                 | 1183                       |
| MAP                 | NH <sub>4</sub> H <sub>2</sub> PO <sub>4</sub>  | 227                        |
| DAP                 | $(NH_4)_2HPO_4$                                 | 689                        |

## Solubilidade de alguns compostos usados como fertilizantes

Os micronutrientes metálicos são fortemente adsorvidos no solo e tem mobilidade muito baixa.


O boro apresenta pouca interação química no solo é é considerado móvel

| Composto            | Fórmula Solubilidade em água (g                                   |     |
|---------------------|-------------------------------------------------------------------|-----|
| Sulfato de zinco    | ZnSO <sub>4</sub>                                                 | 538 |
| Sulfato de cobre    | CuSO <sub>4</sub> .5H <sub>2</sub> O                              | 320 |
| Sulfato de manganês | MnSO <sub>4</sub>                                                 | 629 |
| Ácido Bórico        | H <sub>3</sub> BO <sub>3</sub>                                    | 64  |
| Borax               | Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> .10H <sub>2</sub> O | 20  |

## Acidez do solo afeta eficiência de uso de nutrientes

- pH condiciona a disponibilidade dos íons no solo
  - Acidez natural de solos intemperizados no Brasil
    - Inclusive subsolo
  - Acidez provocada por fertilizantes e manejo
  - Culturas e variedades têm diferentes sensibilidades à acidez
- Corretivos têm lenta mobilidade no perfil
- É importante fazer correção na implantação para facilitar a incorporação de calcário
  - Calagens de manutenção nem sempre corrigem rapidamente a acidez em profundidade

## Uso eficiente de nutrientes começa pela correção de acidez no maior volume de solo na implantação da cultura



#### Correção em subsuperfície:

Crescimento de raízes

Melhor aproveitamento da água e nutrientes

#### Culturas sensíveis e solos pobres:

Incorporação profunda de nutrientes (P, Zn, outros micronutrientes) e dose adicional de calcário

### Eficiência de fertilizantes

- Solubilidade e reação dos íons no solo são importantes para determinar método de aplicação
  - Solúveis & pequena interação química
    - Poucas limitações para método de aplicação
  - Solúveis & forte interação com o solo
    - Aplicação superficial com restrições
  - Insolúveis
    - Aplicação superficial com restrições
  - Sujeitos a volatilização:
    - Incorporação; aditivos

## Uso eficiente de fertilizantes: disponível no local e época certas

Fontes insolúveis ou com Fontes solúveis; dose excessiva; alta interação com o época inadequada; solo com baixa Condição ideal solo: superfície = retenção de íons eficiência reduzida P, micro N, B, (K?) metálicos

### BPM: boas práticas de manejo de fertilizantes



Aproveitamento médio de nutrientes ???

N: 60% P: 30% K: 70%

Teoria do 4-C
Fertilizante certo
Dose certa
Local certo
Época certa

Debate promovido pelo IPNI

### Nutrientes e impacto ambiental

- Impacto positivo: produção agrícola
- Impacto ambiental negativo:
  - Nutrientes em excesso no ecossistema
    - Metais pesados, desequilíbrio nutricional etc
  - Nutrientes transportados para fora do ecossistema
    - Problemas principalmente com N e P

### **Nutrientes & ambiente**



Eutroficação e hipoxia: Golfo do México Inglaterra China

#### Fertilizantes nitrogenados e fosfatados

Baixa eficiência: Sujeitos a perdas por lixiviação, volatilização etc. Excesso no ambiente = potencial poluidor



### Fertilizantes e gases de efeito estufa

N: alto consumo de energia na fabricação (53 MJ/kg N;
 1,400 m³/t NH₃) e alto impacto ambiental devido à emissão de N₂O no campo

$$3.2 + 5.1 = 8.3 \text{ kg CO}_2\text{eq/kg N}$$

- Agricultura: 80% do N<sub>2</sub>O (antropogênica)
- Fertilizantes: 18% dos GEE da agricultura e 2,5% dos GEE (antropogênica) totais.

## Agricultura (adubação) no foco da discussão de GEE

N<sub>2</sub>O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

P. J. Crutzen<sup>1,2,3</sup>, A. R. Mosier<sup>4</sup>, K. A. Smith<sup>5</sup>, and W. Winiwarter<sup>3,6</sup>

<sup>1</sup>Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Mainz, Germany

## Nitrous Oxide (N<sub>2</sub>O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century

A. R. Ravishankara,\* John S. Daniel, Robert W. Portmann Science **326**, 123 (2009);

### New Zealand's Fifth National Communication

UNDER THE UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE Including the Report on the Global Climate Observing System

Chemistry

# Our Nutrient World

The challenge to produce more food and energy with less pollution

ISBN: 978-1-906698-40-9

© Centre for Ecology and Hydrology, 2013.

The report is available on-line at the following locations: www.unep.org www.gpa.unep.org/gpnm.html www.initrogen.org www.scopenvironment.org www.igbp.net/publications

Sutton et al, 2013

 Around 2% of world energy use is dedicated specifically to the industrial manufacture of N<sub>r</sub> mainly through the Haber-Bosch process, so that N<sub>r</sub> prices are closely coupled to global energy prices. An illustration of projected achievable gains is shown in Figure ES5. Globally, a target for 2020 to achieve a relative improvement in full-chain nutrient use efficiency by 20% would deliver an estimated saving of 20 million tonnes of N<sub>r</sub>. Based on initial estimates, this would equate to a global improvement in human health, climate and biodiversity of the order of \$170 (50-400) billion per year (Chapter 8).

## Europe targets reducing the carbon footprint of fruit juice

by ClickGreen staff. Published Tue 19 Apr 2011 14:23

The European Parliament is looking at ways to tighten up the regulations on fruit juice to reduce the carbon footprint of imported drinks and improve its health benefits.

Consumption of fruit juice in the EU has nearly doubled over the past two decades, mostly due its perceived benefits to health.

Parlamento Europeu examina proposta para fortalecer o consumo de produtos locais... Entre as razões está diminuir a pegada de C

More than 80% of all orange juice consumed in Europe comes from Brazil and the USA, with shipments to the EU alone accounting for some two thirds of worldwide

ope the ride -effect: the carbon footprint of all those oranges, as underlined Rodriguez.

80% of European prange juice is imported from Brazil & USA

exports. This, in turn has at least one negative side-effect: the carbon footprint of all those oranges, as underlined in a report by Spanish Socialist MEP, Andres Perello Rodriguez.

A new proposal being examined in Parliament, seeks to strengthen the consumption of local products. The advantages are many, from a far lower carbon footprint to better oversight of the implementation of EU labour standards and food safety rules.

## Rotulação de pegada de C de suco de laranja



#### Our detailed carbon targets

- To halve the emissions per square foot from our stores and distribution centres by 2020 compared to 2006
- To reduce our distribution emissions per case of goods delivered by 25% by 2020 compared to 2011
- To reduce the emissions of the products in our supply chain by 30% by 2020 compared to 2008
- To help our customers to find ways to halve their carbon footprint by 2020

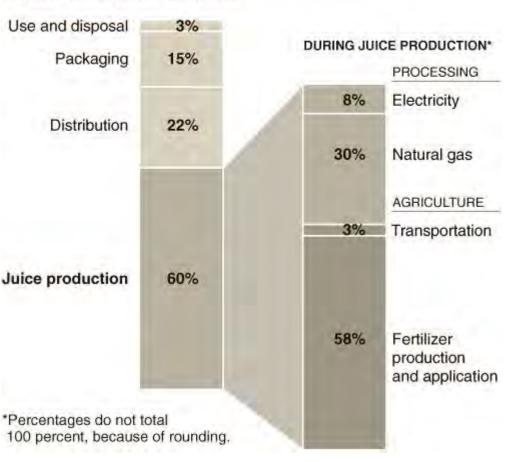
#### Reducing our impact on the environment



Aiming to be a zerocarbon business by 2050 and to use scarce resources responsibly, including in our supply chain

IPNI BPUF - Citros (Cantarella) 10-2013

Helen Fleming Sustainability Director


One half gallon Tropicana not-from-concentrate orange juice

3.75 pounds (1.7 kg) carbon dioxide equivalent

## Fertilizantes & pegada de C em citros

#### Sources of carbon dioxide emissions

#### THROUGHOUT PRODUCT LIFE CYCLE



#### Tropicana Orange Juice Carbon Lifecycle



**©The New York Times** 

### Eficiência de uso de Nutrientes em citros: Fósforo

Solos brasileiros são ricos em óxidos de ferro e alumínio

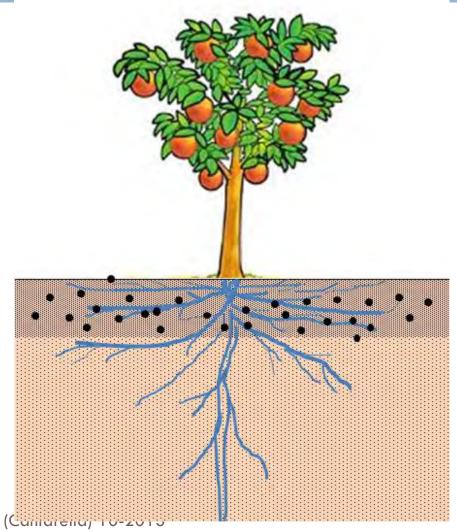
Reações de P com Ca, Fe ou Al determinam, em grande parte, a biodisponibilidade de P

| pH ácido:<br>Controlada por Al e Fe | AIPO <sub>4</sub> ·2H <sub>2</sub> O<br>FePO <sub>4</sub> ·2H <sub>2</sub> O                                                                                                                                                                           |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH alcalino:<br>Controlada por Ca   | CaHPO <sub>4</sub> Ca <sub>3</sub> (PO <sub>4</sub> ) <sub>2</sub> Ca <sub>4</sub> H(PO <sub>4</sub> ) <sub>3</sub> Ca <sub>10</sub> (PO <sub>4</sub> ) <sub>6</sub> (OH) <sub>2</sub> Ca <sub>10</sub> F <sub>2</sub> (PO <sub>4</sub> ) <sub>6</sub> |
| Maior disponibilidade:              | pH 5,5 a 6,8 (água)<br>pH 5,0 – 6,2 (CaCl₂)                                                                                                                                                                                                            |

## Solubilidade dos principais fertilizantes fosfatados

| Fertilizante       | Total | Ácido<br>Cítrico | Citrato de<br>amônio+<br>H₂O | H <sub>2</sub> O | Observações   |
|--------------------|-------|------------------|------------------------------|------------------|---------------|
|                    |       |                  | %                            |                  |               |
| Super simples      | 20    |                  |                              | 18               | 10 a 12% de S |
| Super triplo       | 45    |                  |                              | 40               |               |
| MAP                |       |                  |                              | <b>50</b>        | 10% de N      |
| DAP                |       |                  |                              | 40               | 20% de N      |
| Fosfato natural    | 24    | 2                |                              |                  |               |
| Hiperfosfato em pó | 30    | 12               |                              |                  |               |
| Termofosfato       | 17    | 14               |                              |                  |               |
| Parcial. acidulado | 20    | 11               | 9                            | 5                |               |

## Fontes de P & Modo de Aplicação em Culturas Perenes


P solúvel para manutenção; P P solúvel; raízes superficiais Fonte de baixa solubilidade; incorporado no plantio: + raízes absorvem P interação com solo; pH: baixo em profundidade aproveitamento na superfície

### Fosfatos de baixa solubilidade (natural, natural reativo, termo)

Fosfatos insolúveis dependem da reação com o solo (acidez) para disponibilizar o P para as plantas:

Mais eficientes com granulometria fina e incorporados ao solo

Em culturas perenes isso é viável na implantação do pomar



IPNI BPUF - Citros (Camarena, 10-2013

### Nitrogênio

- Fertilizantes com alta solubilidade
- Sujeitos a perdas por vários processos
- \* Manejo merece cuidado especial

| Fertilizante        | Forma do N                                                | Concentração | Outros<br>nutrientes              |
|---------------------|-----------------------------------------------------------|--------------|-----------------------------------|
|                     |                                                           | % N          | %                                 |
| Ureia               | amídica                                                   | 45           |                                   |
| Nitrato de amônio   | 50% NH <sub>4</sub> , 50% NO <sub>3</sub>                 | 32           |                                   |
| Sulfato de amônio   | NH <sub>4</sub>                                           | 20           | 21% S                             |
| URAN                | 50% amídica, 25%<br>NH <sub>4</sub> , 25% NO <sub>3</sub> | 28           |                                   |
| Nitrato de potássio | $NO_3$                                                    | 13           | 44% K <sub>2</sub> O              |
| Nitrato de cálcio   | NO <sub>3</sub>                                           | 15           | 19% Ca                            |
| MAP                 | NH <sub>4</sub>                                           | 9            | 48% P <sub>2</sub> O <sub>5</sub> |

### Nitrificação

$$NH_4^+ + 1,5 O_2 \longrightarrow NO_2^- + H_2O + 2H^+$$
 $Nitrosomonas$ 
 $NO_2^- + 0,5 O_2 \longrightarrow NO_3^ Nitrobacter$ 

Meio aeróbico

Reação acidificante

Nitrito geralmente não se acumula no solo (exceto alto pH)

Nitrato é muito móvel no solo (lixiviação)

### Volatilização de amônia

### Condições:

- pH alto: qualquer fertilizante com N amoniacal
- Solos brasileiros são predominantemente ácidos
- Ureia: hidrólise eleva pH ao redor dos grânulos
- •Perdas: 10 30% N (valores + altos na literatura)



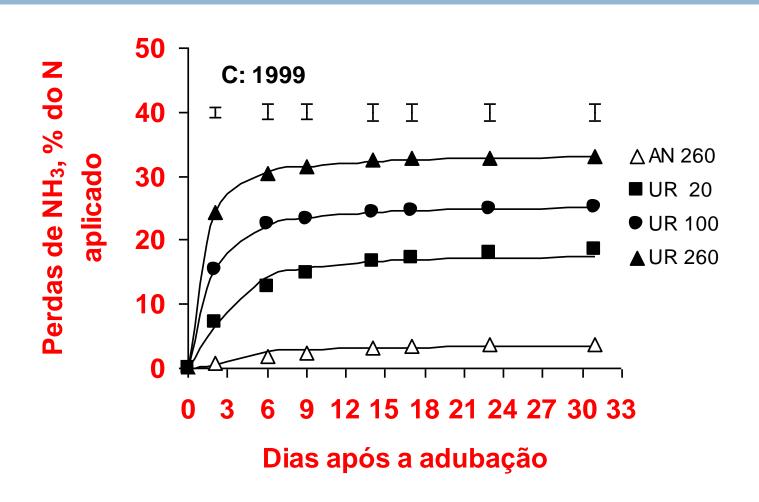
### Desnitrificação

$$2 \text{ NO}_3^- + 5 \text{ H}_2 + 2 \text{ H}^+ \rightarrow \text{N}_2(g) + 6 \text{ H}_2\text{O}$$

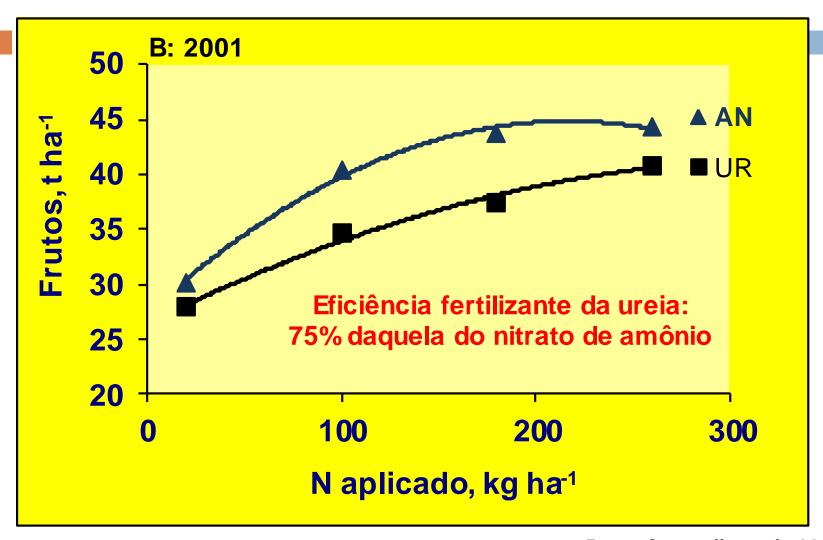
$$\stackrel{\text{(+5)}}{\text{NO}_3^-} \stackrel{\text{2e}^-}{\longrightarrow} \stackrel{\text{(+3)}}{\text{NO}_2^-} \stackrel{\text{e}^-}{\longrightarrow} \stackrel{\text{(+2)}}{\text{[NO]}} \stackrel{\text{e}^-}{\longrightarrow} \stackrel{\text{(+1)}}{\text{N}_2\text{O}} \stackrel{\text{e}^-}{\longrightarrow} \stackrel{\text{(0)}}{\text{N}_2}$$

Condição anaeróbica

Microrganismos quimoheterotróficos (usam C como fonte de energrada hitrato (Ritrito) Como? receptores de elétrons)


#### Parte do N perdido como N<sub>2</sub>O

#### Fertilizante: ureia


- Principal adubo sólido no mercado mundial
  - □ 46% N
  - □ Síntese: NH<sub>3</sub> + CO<sub>2</sub>
  - □ Preço N: UR<NA<SA</p>
- NA: restrições crescentes à produção, transporte e estocagem



## Volatilização de amônia em pomar de citros (Ano 3)



### Produção de laranja x fonte de N



Fonte: Cantarella et al., 2003

## Absorção foliar de NH<sub>3</sub> volatilizada



Pomar de laranja Natal com 6 anos.

Espaçamento:  $6.0 \times 2.7 \text{ m}$ 

Adubo (UR) marcado com <sup>15</sup>N, sem contato com o solo. Dose: ~80 kg ha<sup>-1</sup> de N



IPNI BPUF - Citros (Cantarella) 10-2013



Árvores cortadas e analisadas após 21 dias

Absorção foliar: 3 a 7% da NH<sub>3</sub> volatilizada recuperada

Boaretto et al., 2012



### Emissão de GEE em citros no Brasil Laranja fertirrigada por 11 anos; Branco Peres (Reginópolis)



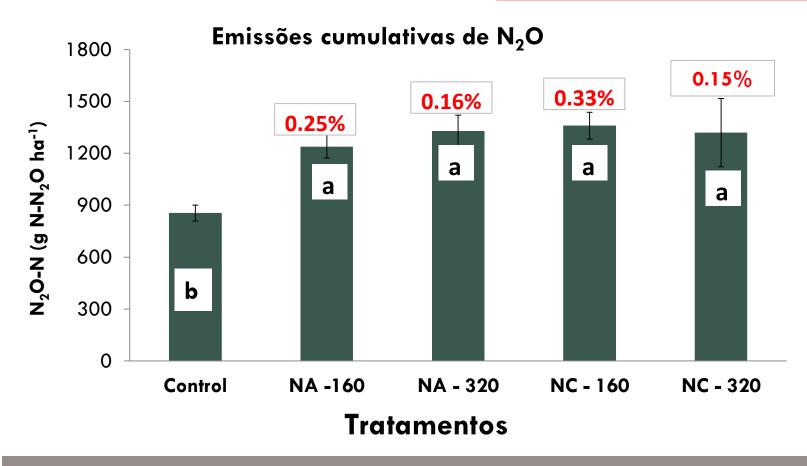
Câmaras posicionadas sob e entre os gotejadores



Câmaras entre linhas: testemunhas

Fonte: Martins, AA (2013)

## Fluxos cumulativos de N<sub>2</sub>O-N


Martins, AA (2013)

Área total:

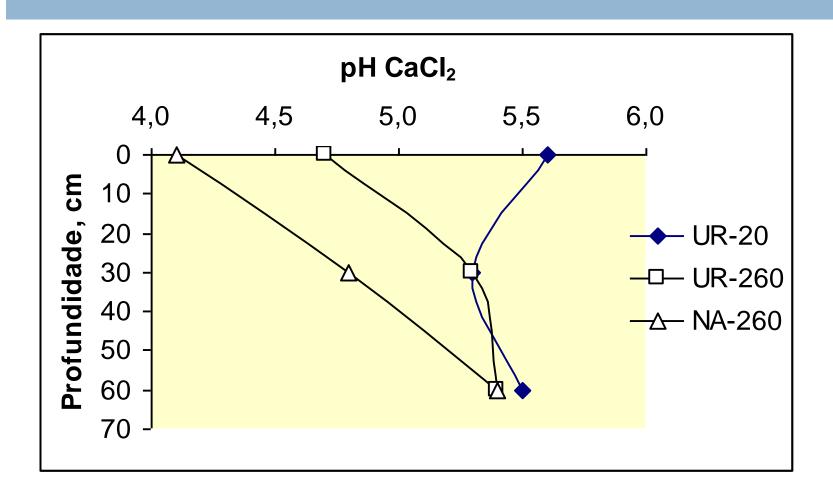
Gotejador = 9%;

Entre gotej = 34%;

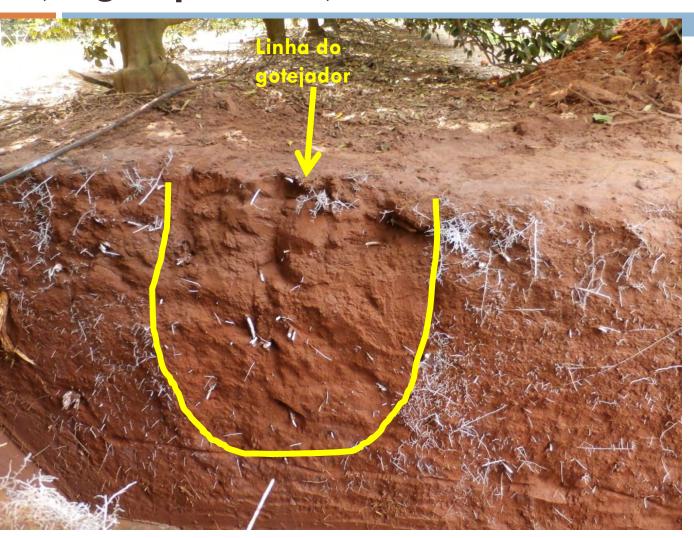
Entre linhas= 57 %



IPCC = 1% Nossos dados experimentais = média 0.22%


## Acidificação do solo por fertilizantes nitrogenados

| Fertilizante        | Forma do N                                | Equivalente CaCO <sub>3</sub> |                     |  |
|---------------------|-------------------------------------------|-------------------------------|---------------------|--|
|                     |                                           | por kg de N                   | por t do<br>produto |  |
| Ureia               | amídica                                   | -1,80                         | -790                |  |
| Nitrato de amônio   | 50% NH <sub>4</sub> , 50% NO <sub>3</sub> | -1,80                         | -580                |  |
| Sulfato de amônio   | NH <sub>4</sub>                           | -5,35                         | -1070               |  |
| MAP                 | NH <sub>4</sub>                           | -5,00                         | -450                |  |
| Nitrocálcio         | 50% NH <sub>4</sub> , 50% NO <sub>3</sub> | 0                             | 0                   |  |
| Nitrato de potássio | NO <sub>3</sub>                           | +2,00                         | +260                |  |
| Nitrato de cálcio   | NO <sub>3</sub>                           | +1,35                         | +190                |  |


Fontes: Raij et al (1997); IFDC (1979)

### Acidificação do solo após 5 anos:

pH na faixa adubada do pomar



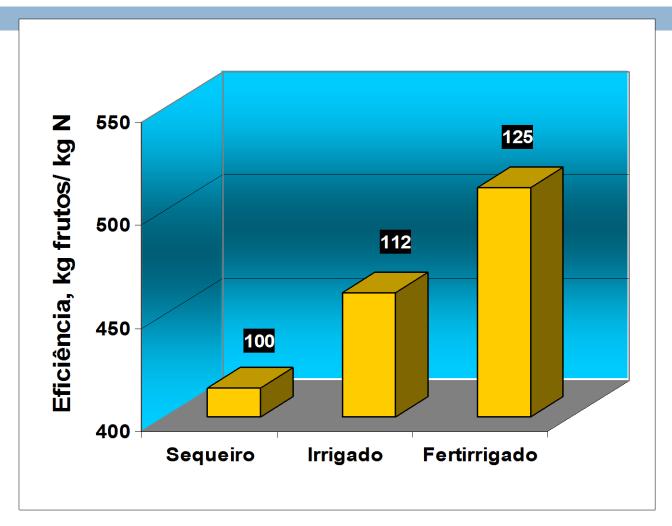
## Perfil de solo (Argissolo) cultivado com laranja (Reginópolis, SP): nitrato de amônio



Bulbo acidificado por fertilizante nitrogenado: irrigação é feita em local sem raízes

## Perfil de solo (Argissolo) cultivado com laranja (Reginópolis, SP): nitrato de cálcio




Sistema radicular abundante e bem distribuído, sem acidificação na linha do gotejador

IPNI BPUF - Citros (Cantarella) 10-2013

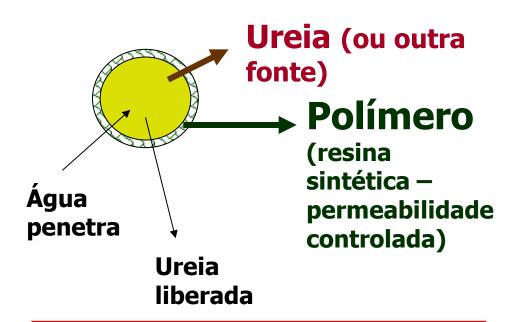
### Fertilizante + água

- Fertirrigação normalmente aumenta a eficiência de uso de nutrientes
  - Menor estresse por falta de água
  - Fertilizante localizado na zona de maior densidade radicular
  - Parcelamento

### Eficiência fertilizante com irrigação e fertirrigação em citros: média de 5 anos



Fonte: Quaggio et al., 2006

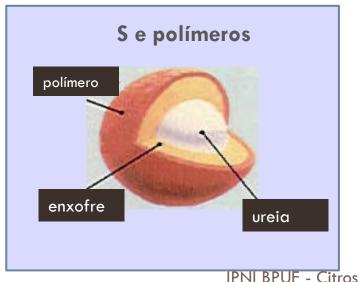

### Medidas para reduzir perdas de N: Fontes alternativas

"Fertilizantes de Eficiência Aumentada\*"

- A) Fertilizantes de liberação lenta ou controlada
  - Recobertos, encapsulados, baixa solubilidade etc.
- B) Fertilizantes estabilizados
  - Contêm aditivos ou inibidores

\*Enhanced efficiency fertilizers (EEF)

## Fertilizantes nitrogenados de liberação controlada — Coberturas com polímeros




Liberação é controlada pela composição ou espessura do recobrimento:

Ex. 80% liberado em 30 dias, 90 dias etc

Vários produtos, com diferentes tecnologias de produção da cobertura

Osmocote; Meister, Producote, Nutricote;



## Liberação controlada de nutrientes em fertilizantes recobertos com polímeros

| Temperatura média<br>do solo | 3 M                                | 6 M   | 9 M    | 12 M    |
|------------------------------|------------------------------------|-------|--------|---------|
|                              | Tempo médio para liberação (meses) |       |        |         |
| 15 °C                        | 4 a 5                              | 6 a 7 | 9 a 10 | 13 a 14 |
| 21 °C                        | 3 a 4                              | 5 a 6 | 8 a 9  | 11 a 12 |
| 27 °C                        | 2 a 3                              | 4 a 5 | 7 a 8  | 10 a 11 |

Prazo para liberação dos nutrientes controlado pelas características do material de cobertura e pela temperatura do solo

## Fertilizantes de liberação lenta ou controlada:

- Muitos resultados positivos na literatura
  - Aumento da EUN
  - Dispensa parcelamentos
- Às vezes a liberação do N não é a pretendida: resultados desfavoráveis ou iguais às fontes solúveis
  - Falhas no recobrimento
  - Condições solo/clima não favorecem
     liberação/dissolução: liberação do N antes ou depois do pretendido

### Relação de preços de fertilizantes LL/C

| SCU – PCSCU | 2:1     |
|-------------|---------|
| UF          | 3 a 5:1 |
| Polímeros   | 4 a 8:1 |

Custo do polímero: 10 a 30 vezes o custo do fertilizante Indústrias trabalham para reduzir custo de fertilizantes LL/C Mercado pequeno mas em grande crescimento

LL/C: 0,19% do mercado do convencional (EUA ~1,1%)

China (2006/07): 1 Mt de capacidade (SCU/PCSCU)

Incluindo China: 0,47% do consumo de fertilizantes minerais

### Fertilizantes Estabilizados

- □ Inibidores de nitrificação
- □ Inibidores de urease

## Inibidor de nitrificação (DMPP): 86 experimentos



Na maioria dos ensaios a produção com o inibidor foi

mais elevada:

Ganhos (t ha<sup>-1</sup>):

Trigo: + 0,25

Milho: + 0,24

**Batata:** + 1,6

Beterraba: + 0,24

Arroz: +0,29

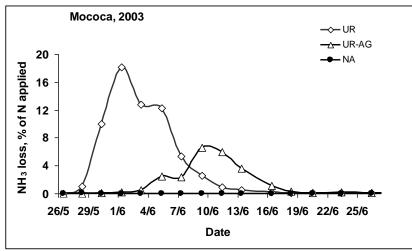
# Movimentação de N inorgânico em pomar de citros (camada 20 to 60 cm) após 5 anos de adubação nitrogenada

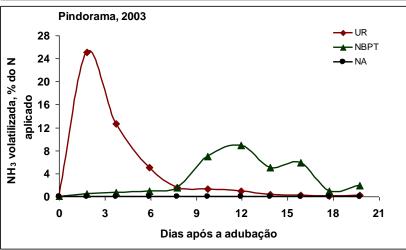
| Fonte de N           | Dose    | Data de amostragem                                                     |           |        |           |
|----------------------|---------|------------------------------------------------------------------------|-----------|--------|-----------|
|                      |         | 4/1997                                                                 | 10/1998   | 4/1999 | 8/2000    |
|                      | kg/ha N | kg/ha N-(NH <sub>4</sub> <sup>+</sup> + NO <sub>3</sub> <sup>-</sup> ) |           |        |           |
| Uréia                | 20      | 26                                                                     | 24        | 23     | 35        |
|                      | 100     | 18                                                                     | 22        | 18     | 32        |
|                      | 180     | 32                                                                     | 34        | 24     | 59        |
|                      | 260     | 32                                                                     | 32        | 24     | 50        |
| Nitrato de<br>amônio | 20      | 20                                                                     | 26        | 21     | 32        |
|                      | 100     | 30                                                                     | 37        | 22     | 56        |
|                      | 180     | <b>79</b>                                                              | 40        | 20     | 83        |
|                      | 260     | <b>59</b>                                                              | <b>79</b> | 22     | <b>63</b> |

Fonte: Cantarella et al., 2003

### Inibidores de nitrificação: resumo

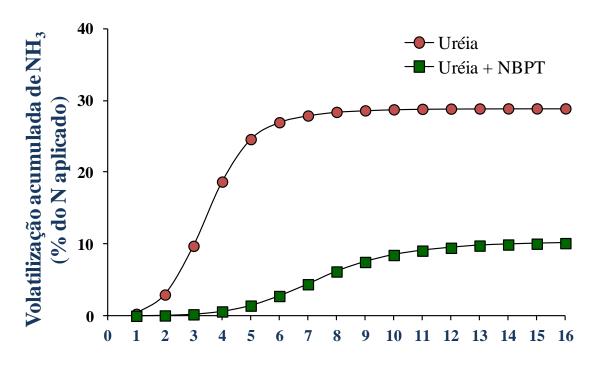
- Efeitos positivos em apenas parte dos experimentos
- Potencial em solos leves e com riscos de lixiviação
- Nem sempre são substitutos para bom manejo mas, oferecem flexibilidade para alternativas de manejo (antecipação de aplicação, redução de parcelamentos)
- Inibidores de nitrificação geralmente também reduzem emissão de N<sub>2</sub>O – mas é questionável se isso pode promover o uso de tais produtos


### Inibidores de urease


 Literatura: > 14.000 compostos ou misturas testadas como inibidor de urease de solos (Kiss & Simihaian, 2002)

$$CO(NH_2)_2 + 2H^+ + 2H_2O \xrightarrow{urrase} 2NH_4^+ + H_2CO_3^*$$

- NBPT: no mercado desde 1996 (20 a 25% de NBPT + solvente
- Há interesse no produto no Brasil
  - Ureia cerca de 60% do mercado de N
  - Predominam aplicações superficiais
  - Altas perdas de NH<sub>3</sub> relatadas em campo


# Fundamento para ação dos inibidores de urease





- Retardar hidrólise de ureia e reduzir perdas de NH<sub>3</sub>
- Estabilidade: 3 a 15 dias (T, umidade):
  - Brasil: 3 a 7 dias
- NBPT reduz e atrasa o pico de hidrólise em relação ao da ureia sem inibidor.
- Em temperaturas mais baixas o efeito do NBPT é mais duradouro.

### Inibidores de urease

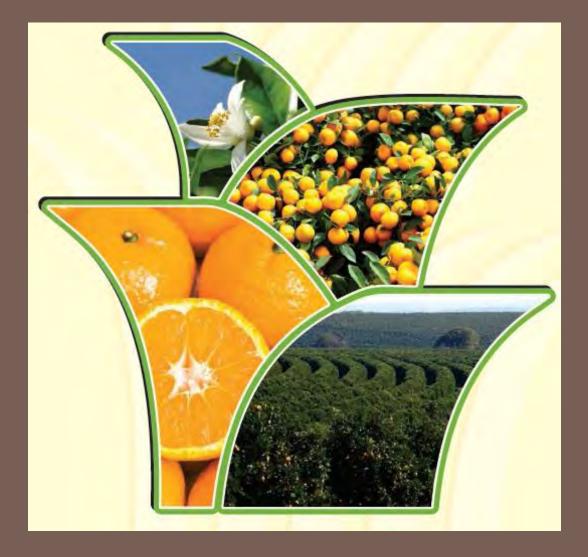


Dias após a aplicação dos fertilizantes

### Perdas de NH<sub>3</sub> em campo. Brasil

| Cultura/Local     | Volatilização de NH <sub>3</sub> (Percentagem de redução comparado à uréia) |                |  |
|-------------------|-----------------------------------------------------------------------------|----------------|--|
|                   | UR                                                                          | UR-NBPT        |  |
|                   | % do N aplicado                                                             |                |  |
| Milho Mococa      | 45                                                                          | <b>24</b> (47) |  |
| Milho Rib. Preto  | 37                                                                          | <b>5</b> (85)  |  |
| Milho Mococa      | 64                                                                          | <b>22</b> (65) |  |
| Milho e Pindorama | 48                                                                          | 34 (29)        |  |
| Pastagem 1        | 18                                                                          | <b>6</b> (69)  |  |
| Pastagem 2        | 51                                                                          | <b>22</b> (56) |  |
| Pastagem 3        | 18                                                                          | <b>3</b> (83)  |  |
| Pastagem 4        | 18                                                                          | <b>2</b> (89)  |  |
| Média             | 37                                                                          | <i>15 (60)</i> |  |

#### **NBPT**:


- O NBPT não elimina mas reduz as perdas de NH<sub>3</sub> permitindo o aumento da eficiência de uso da uréia
- Eficiência depende de condições ambientais
- Quanto maior o risco de perdas de NH<sub>3</sub>, maior pode ser o benefício do uso do inibidor

### Fertilizantes "Protegidos"

- Muitos produtos no mercado não entregam o que prometem
- □ Redução de doses
  - Justificar produtos mais caros
  - Nem sempre o ganho em eficiência paga o preço adicional

### Conclusões

- Aumentar a eficiência de uso de nutrientes tem benefícios econômicos e ambientais
- Há múltiplas estratégias para tal
  - Empregar estratégias conhecidas e comprovadas (4-C)
  - Cuidar da reação do solo (não só da superfície)
  - Levar em conta características de espécies e variedades
  - Quando economicamente viável, fazer uso de fertilizantes que ajudem a controlar perdas e aumentar a absorção de nutrientes pelas plantas



### **MUITO OBRIGADO**

Heitor Cantarella cantarella@iac.sp.gov.br