REQUISITOS DE QUALIDADE DOS FERTILIZANTES MINERAIS

Arnaldo Antonio Rodella

Engenheiro Agrônomo Mestre em Química Analítica Doutor em Ciências

Publicado por

Piracicaba 2018

Editoração, revisão, normalização e diagramação:

Engenheira Agrônoma Silvia Regina Stipp

Catalogação na Publicação DIVISÃO DE BIBLIOTECA - DIBD/ESALQ/USP

Rodella, Arnaldo Antonio

Requisitos de qualidade dos fertilizantes minerais / Arnaldo Antonio Rodella. - - Piracicaba: IPNI - International Plant Nutrition Institute, 2018.

226 p.: il.

ISBN: 978-85-98519-10-4

1. Fertilizantes minerais - Qualidade I. Título

CDD 631.8 R687r

Elaborada por Maria Angela de Toledo Leme - CRB-8/3359

Nota do editor: Esta publicação está normalizada de acordo com a Associação Brasileira de Normas Técnicas (ABNT).

É proibida a reprodução total ou parcial, por quaisquer meios, sem a autorização por escrito do autor e da editora.

IMPRESSO NO BRASIL PRINTED IN BRAZIL

APRESENTAÇÃO

Os fertilizantes são insumos fundamentais para o aumento da produtividade e do lucro dos agricultores, e ainda para a manutenção da produção de alimentos, de energia renovável e de fibra, necessários para uma população em crescimento. É bem conhecida a importância destes produtos para a sustentação do fluxo adequado de produção das fazendas para os consumidores.

Como qualquer outro produto, os fertilizantes devem ser utilizados de forma segura. Aplicações inadequadas poderão comprometer a sua eficácia e/ou causar problemas, se utilizados de forma excessiva. Todo o setor de fertilizantes tem se esforçado ao máximo para difundir a forma adequada de utilização dos fertilizantes em relação à fonte correta, dose correta, local correto e época correta de aplicação (manejo 4C da aplicação de fertilizantes).

Para que o uso dos fertilizantes seja maximizado e o manejo de nutrientes 4C para cada gleba de produção seja eficientemente definido, é necessário considerar as características dos diferentes materiais disponíveis. Neste sentido, o International Plant Nutrition Institute (IPNI) no Brasil teve a imensa satisfação em mediar e editorar a obra "Requisitos de Qualidade dos Fertilizantes Minerais". Trata-se de uma ideia de longa data que agora se materializa, tendo como autor uma das maiores autoridades no assunto no Brasil.

Os requisitos de qualidade dos fertilizantes minerais ainda guardam aspectos controversos. Em muitos casos, há ausência de informação clara sobre a origem de alguns conceitos, sobre as metodologias adequadas ou ainda sobre a interpretação dos resultados obtidos. Este livro resume o que há de melhor sobre o assunto, elucidando muitas questões e controvérsias. Acredito que a obra trará esclarecimento e isso auxiliará de forma decisiva na produção e utilização eficiente dos fertilizantes.

Em meu nome e em nome do IPNI Brasil, quero agradecer a todos aqueles que colaboraram para a confecção desta obra, muito especialmente ao Dr. Arnaldo Antonio Rodella, o qual buscou o que há de melhor na literatura e resumiu de forma brilhante o assunto nesta publicação, e à

Silvia Regina Stipp, a qual por anos tem revisado e auxiliado a publicar matérias e livros de grande valor em prol de nossa agricultura. Agradeço, ainda, à ANDA, pela contribuição financeira para a impressão do livro.

Com mais esta obra, o IPNI Brasil está cumprindo a sua missão institucional de promover e disseminar informação científica para o manejo responsável dos nutrientes das plantas em benefício da família humana. E isto é motivo de imenso orgulho!

Piracicaba, SP, julho de 2018

Luís Ignácio Prochnow

Diretor do International Plant Nutrition Institute Programa Brasil

PREFÁCIO

Este livro trata da qualidade dos fertilizantes minerais, tema que, na prática, suscita dúvidas e questões diversas nos consumidores e produtores, tais como: Porque uma mistura empedra e outra não? Porque uma mistura segrega e outra não? Uma fonte de nutrientes mais econômica supre as necessidades imediatas de uma cultura? O teor de contaminante presente no fertilizante atende aos requisitos estabelecidos pela legislação vigente? Para responder objetivamente a cada uma dessas questões é necessário empregar parâmetros quantitativos que norteiam as pesquisas técnicas e científicas.

Frequentemente, considera-se que a qualidade dos fertilizantes se expressa tão somente pela compatibilidade entre o teor presente e o teor garantido de nutrientes. Contudo, existe uma gama de parâmetros que a compõem, inclusive os de natureza física, aos quais nem sempre se dá a devida importância.

O presente livro pretende oferecer uma visão abrangente sobre os requisitos de qualidade dos fertilizantes minerais sólidos. Para tanto, serão considerados os fundamentos básicos, os métodos de determinação e, sempre que possível, o emprego desses parâmetros em pesquisas envolvendo a qualidade dos fertilizantes. Procurar-se-á oferecer uma base para o entendimento dos parâmetros determinantes da qualidade dos fertilizantes de forma a fornecer elementos para discussões. Cada capítulo deste livro deve ser um ponto de partida, um estímulo ao aprofundamento do conhecimento e à pesquisa mais específica.

Agradeço ao Dr. Luís Ignácio Prochnow e ao IPNI pela confiança em me atribuir a responsabilidade de escrever este livro; à Engenheira Agrônoma Silvia Regina Stipp, que, com seu trabalho de revisão preciso, fez com que eu desse o melhor de mim; e ao saudoso Prof. Dr. José Carlos Alcarde, colega de trabalho, amigo e mestre, que me proporcionou o privilégio de ser co-autor de alguns de seus trabalhos neste tema.

Piracicaba, SP, julho de 2018

Arnaldo Antonio Rodella

SUMÁRIO

Capítulo 1 – ASPECTOS GERAIS	1
1.1. Uso racional de fertilizantes	2
1.2. Qualidade alimentar	4
1.3. Conceito geral de qualidade	6
1.4. Controle, garantia e gestão da qualidade do produto	7
1.5. Controle de qualidade e análises químicas	13
1.6. Controle de qualidade e fiscalização	17
1.7. Fertilizantes e ambiente	18
Capítulo 2 – REQUISITOS DE NATUREZA FÍSICA	23
2.1 Estado físico	24
2.2. Granulometria	28
2.2.1. Ensaio de peneiramento	29
2.2.2. Análise por imagem	30
2.2.3. Escalas granulométricas	31
2.2.4. Legislação brasileira sobre granulometria de fertilizantes .	32
2.2.5. Curva de distribuição granulométrica	32
2.2.6. Equipamentos de agitação	35
2.2.7. Índices de granulometria	
2.3. Segregação de fertilizantes	48
2.3.1. Mecanismos de segregação	51
2.3.2. Tipos de segregação que ocorrem no manuseio de fertilizantes	54
2.3.3. Avaliação da tendência à segregação	60
2.3.4. Efeito da segregação nas análises físicas e químicas do	
fertilizante	61

2.4.	. Esfericidade	64
	2.4.1. Determinação da esfericidade	66
2.5.	. Densidade	69
	2.5.1. Densidade a granel	69
	2.5.2. Densidade aparente	73
	2.5.3. Densidade real	74
	2.5.4. Porosidade	75
	2.5.5. Efeito da densidade sobre a aplicação de fertilizantes no campo	77
2.6.	. Resistência mecânica	77
	2.6.1. Resistência à compressão	78
	2.6.2. Resistência à abrasão	81
	2.6.3. Resistência ao impacto	85
2.7.	. Ângulo de repouso	87
	2.7.1. Fundamentos sobre força de atrito e coeficiente de atrito	89
	2.7.2. Ângulo de repouso em fertilizantes	91
	2.7.3. Determinação do ângulo de repouso	94
	2.7.4. Estabilidade das pilhas de fertilizantes	96
	2.7.5. Coeficiente de atrito em materiais particulados	98
	2.7.6. Medida da resistência em células de cisalhamento	98
2.8.	. Fluidez	101
	2.8.1. Padrões de escoamento do material granular em depósitos	103
	2.8.2. Determinação da fluidez em fertilizantes	105
Cap	oítulo 3 - REQUISITOS DE NATUREZA QUÍMICA	109
3.1.	Número de nutrientes	109
3.2.	Espécie química dos nutrientes	111
3.3.	. Concentração de nutrientes	112

3.4. Compostos indesejáveis	113
3.4.1. Metais pesados	115
3.4.2. Biureto	118
3.4.3. Radionuclídeos	119
3.4.4. Flúor	121
3.4.5. Percloratos	122
3.4.6. Dioxinas	123
Capítulo 4 – REQUISITOS DE NATUREZA FÍSICO-QUÍMICA	127
4.1. Comportamento ácido-base dos fertilizantes	127
4.1.1. Conceito de ácido e de base de Bronsted-Lowry	127
4.1.2. Acidez livre	130
4.1.3. Comportamento ácido-base do fertilizante no solo	130
4.1.4. Equivalente em carbonato de cálcio para expressar a acide ou a alcalinidade dos fertilizantes	
4.2. Solubilidade	134
4.2.1. Solubilidade de compostos iônicos em água	135
4.2.2. Regras gerais de solubilidade dos sais	136
4.2.3. Equilíbrio de dissolução-precipitação	138
4.2.4. Solubilidade dos fertilizantes	138
4.2.5. Fertilizantes de liberação lenta ou controlada	140
4.3. Higroscopicidade	149
4.3.1. Fundamentos	149
4.3.2. Adsorção de água	151
4.3.3. Avaliação da higroscopicidade dos fertilizantes	154
4.3.4. Umidade relativa crítica	155
4.4. Absorção e penetração de umidade	162
4.4.1. Determinação	
4.5. Empedramento	167

4.5.1. Avaliação do empedramento em fertilizantes	. 168
4.5.2. Mecanismos de empedramento	. 169
4.5.3. Fatores que influenciam o empedramento	. 172
4.5.4. Efeito dos condicionadores	. 176
4.6. Índice salino	. 177
4.6.1. Potencial total da água no solo	. 179
4.6.2. Potencial osmótico	. 180
4.6.3. Absorção de água pela planta	. 182
4.6.4. A origem do conceito de índice salino	. 183
4.6.5. Método de Jackson para determinação do índice salino	. 185
4.7. Compatibilidade nas misturas de fertilizantes	. 189
4.7.1. Compatibilidade física	. 189
4.7.2. Compatibilidade química	. 192
4.7.3. Ensaio de compatibilidade química em misturas de grânulos	. 195
4.7.4. Riscos de fogo e explosão	. 195
CONSIDERAÇÕES FINAIS	. 197
REFERÊNCIAS	. 199